African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Chlorella vulgaris DPSF 01: A unique tool for removal of toxic chemicals from tannery wastewater

P. S. Subashini
  • P. S. Subashini
  • Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India.
  • Google Scholar
P. Rajiv
  • P. Rajiv
  • Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India.
  • Google Scholar


  •  Received: 07 December 2017
  •  Accepted: 25 January 2018
  •  Published: 21 February 2018

References

Ajayan KV, Selvaraju M (2011). Reflector based chlorophyll production by spirulina platensis through energy save mode. Bioresour. Technol. 102(16):7591-7594.
Crossref

 

Ajayan KV, Selvaraju M (2012). Heavy metal induced antioxidant defense system of green microalgae and its effective role of phycoremediation of tannery effluent. Pak. J. Bio. Sci. 15:1056-1062.
Crossref

 
 

Ajay KP, Vinay D (2012). Biodegradation of azo dye reactive red BL by Alcaligenes Sp. AA09. Int. J. Eng. Sci. 1(12):54-60.

 
 

Ajayan KV, Muthusamy S, Pachikaran U (2015). Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int. J. Phytorem. 17:907-916.
Crossref

 
 

Arnon DI (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant physiol. 24:1-15.
Crossref

 
 

Ayodhaya DK (2013). Bioremediation of wastewater by using microalgae: an experimental study. Int. J. Life. Sci. Pharma. Rev. 2(3):340-346.

 
 

Balaji S, Kalaivani T, Sushma B (2016). Charaterization of sorption and differential stress response of microalgae isolates against tannery effluents from Ranipet industrial area – an application towards phycoremediation. Int. J. Phytorem. 18(8):747-753.
Crossref

 
 

Balakumar K, Sharpudin J, Mubarak BH (2014). Comparative study of carbon sequestration by algae in domestic sewage and industrial effluent. Int. J. Emer. Technol. Adv. Eng. 4:807-809.

 
 

Becker EW (1994). Microalgae: Biotechnology and Microbiology. Cambridge Univesity Press, Cambridge, UK.

 
 

Bernhardt ES, Lawrence EB, Walsh CJ (2008). Understanding, managing and minimizing urban impacts on surface water nitrogen loading. Annals of the New York Academy Sciences, Year in Ecology and Conservation Biology, 61-96.
Crossref

 
 

Borowitzka MA (1998). Limits to growth. In: Wong, Y.S., Tam, N.F.Y., (Eds.), Wastewater treatment with algae. Springer-Verlag, New York, pp. 203-226.
Crossref

 
 

Chellam CT, Sampathkumar P (2012). Bio removal of nutrients in tannery effluent water using marine microalgae, Chlorella marina", Proceedings of International Forestery and Environment Symposium, Sri Lanka, Published by Department of Forestry and Environmental Science, University of Sri Jayewardenepura, P 17.

 
 

Chu WL, See YC, Phang SM (2009). Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J. Appl. Phycol. 21:641-648.
Crossref

 
 

Cindrella D, Naseera K, Anirudh R (2016). Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. J. Appl. Phycol. 29(1):235-243.

 
 

Clesceri LS, Greenberg AE, Trussel RR (1989). Standard Methods for the Examination of Water and Wastewater (17th Edition), American Public Health Association, Washington, DC.

 
 

Deng L, Zhu X, Wang, X (2007). Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18:393-402.
Crossref

 
 

Dilek D, Abel UU, Tulay O (2012). Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliqus (Turpin) Kutzing 1833. Afr. J. Biotechnol. 11(16):3817-3824.

 
 

Ding J, Zhao F, Cao Y (2015). Cultivation of microalgae in diary farm wastewater without sterilization. Int.J. Phytorem. 17(3):222-227.
Crossref

 
 

Dinesh KS, Santhanam P, Jayalakshmi T (2015). Excessive nutrients and heavy metal removal from diverse wastewaters using marine microalgae Chlorella marina (Butcher). Ind. J. Geo-Marine Sci. 44(1).

 
 

Durai G, Rajasimman M (2011). Biological treatment of tannery wastewater - A review. J. Environ. Sci. Technol. 4:1-17.
Crossref

 
 

Fraile A, Penche S, González F (2005). Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chem. Ecol. 21(1):61-75.
Crossref

 
 

Gardea-Torresdey JL, Becker-Hapak MK, Hosea JMD (1990). Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmen. Sci. Technol. 24(9):1372-1378.
Crossref

 
 

Gupta VK, Rastogi A (2008). Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazar. Mater. 153(1-2):759-766.
Crossref

 
 

Hammouda O, Abdel-Raouf N, Shaaban M (2015). Treatment of mixed domestic-industrial wastewater using microalgae Chlorella sp. J. Am. Sci. 11(12):303-315.

 
 

Hanumantha RP, Ranjith KR, Raghavan BG (2011). Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water Sol. 37(1):7-14.

 
 

Kishore J, Patil RT, Hitendra KL (2015). Bioprecipitation and biodegradation of fabric dyes by using Chara Sp. And Scenedesmus obliquus. J. Chem. Pharma. Res. 7(8):783-791.

 
 

Lauber CL, Hamady M, Knight R (2009). Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community composition at the continental scale. Appl. Environ. Microbiol. 75(15):5111-5120.
Crossref

 
 

Lenore SC (1998). Standard Methods for the Examination of Water and Wastewater, (20th Edition), American Public Health Association, Washington, DC, USA.

 
 

Lin J, Liu H (1992). Degradation of azo dyes by algae. Environ. Pollu. 75(3):273-278.
Crossref

 
 

Mehta SK, Tripathi BN, Gaur JP (2000). Influence of pH, temperature, culture age and cations on adsorption and uptake of Ni by Chlorella vulgaris. Euro. J. Protist. 36(4):443-450.
Crossref

 
 

Mehta SK, Gaur JP (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25(3):113-152.
Crossref

 
 

Nandha S, Sarangi PK, Abraham J (2010). Cyanobacterial remediation of industrial effluents II. Paper mill effluents. New York Sci. J. 3(12):37-41.

 
 

Nichols HE (1973). Growth media freshwater. In: Stein, J., (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University press, Cambridge, pp. 7-24.

 
 

Rai UN, Dwivedi S, Tripathi RD (2005). Algal biomass: an economical method for removal of chromium from tannery effluent. Bull. Environ. Contamin. Toxicol. 75(2):297-303.
Crossref

 
 

Rehman A, Farah RS, Shakoori AR (2007). Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. Wor. J. Microbiol. Biotechnol. 23(6):753-758.
Crossref

 
 

Rehman A (2011). Heavy metals uptake by Euglena proxima isolated from tannery effluents and its potential use in wastewater treatment. Russ. J. Ecol. 42(1):44-49.
Crossref

 
 

Sharma GK, Khan SA (2013). Bioremediation of sewage wastewater using selective algae for manure production. Int. J. Environ. Eng. Manag. 4(6):573-580.

 
 

Sheehan J, Dunahay T, Benemann, J (1998). A look back at the US Department of energy's Aquatic sciences program-Biodiesel from algae. Golden, CO, National Renewable Energy institute, Report No. NREL/TP-580-24190.

 
 

Suresh KK. Hans UD, Eun JW (2015). Microalgae - A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113:329-352.
Crossref

 
 

Sivasubramanian V, Subramanian VV, Muthukumaran M (2012). Algal technology for effective reduction of total hardness in wastewater and industrial effluents. J. Phycol. Soc. (India). 42(1):51-58.

 
 

Yadavalli R, Rao CS, Rao RS (2014). Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: Study on open and closed systems. Asia-Pacific J. Chem. Eng. 9(3):368-373.
Crossref