African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12488

Full Length Research Paper

Trichoderma atroviride 102C1: A promising mutant strain for the production of a β-glucosidase, -xylosidase and -L-arabinofuranosidase activities using agroindustrial by-products

Jéssica Caroline Araujo SILVA
  • Jéssica Caroline Araujo SILVA
  • Departamento de Microbiologia Geral, Avenida Carlos Chagas Filho Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Instituto de Microbiologia Paulo de Góes, 373, Bloco I, Laboratório 055, CEP: 21941-902. Rio de Janeiro, RJ, Brazil.
  • Google Scholar
André Luiz GRIGOREVSKI-LIMA
  • André Luiz GRIGOREVSKI-LIMA
  • Departamento de Microbiologia Geral, Avenida Carlos Chagas Filho Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Instituto de Microbiologia Paulo de Góes, 373, Bloco I, Laboratório 055, CEP: 21941-902. Rio de Janeiro, RJ, Brazil.
  • Google Scholar
Elba Pinto da Silva BON
  • Elba Pinto da Silva BON
  • Departamento de Bioquímica, Avenida Athos da Silveira Ramos, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências Matemática e da Natureza (CCMN), Instituto de Química, 149, Bloco A, sala 539, CEP: 21941-909. Rio de Janeiro, RJ, Brazil.
  • Google Scholar
Rosalie Reed Rodrigues COELHO
  • Rosalie Reed Rodrigues COELHO
  • Departamento de Microbiologia Geral, Avenida Carlos Chagas Filho Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Instituto de Microbiologia Paulo de Góes, 373, Bloco I, Laboratório 055, CEP: 21941-902. Rio de Janeiro, RJ, Brazil.
  • Google Scholar
Rodrigo Pires do NASCIMENTO
  • Rodrigo Pires do NASCIMENTO
  • Departamento de Engenharia Bioquímica, Avenida Athos da Silveira Ramos, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia (CT), Escola de Química, 149, Bloco E, sala 108, CEP: 21941-909. Rio de Janeiro, RJ, Brazil.
  • Google Scholar


  •  Received: 03 August 2018
  •  Accepted: 07 September 2018
  •  Published: 19 September 2018

References

Aliyah A, Alamsyah G, Ramadhani R, Hermansyah H (2017). Production of a-amylase and b-glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia 136:418-423. 
Crossref

 

Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Gonçalves DSPO, Rezende ST (2011). Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Applied Biochemistry of Biotechnology 165:594-610. 
Crossref

 
 

Bonfá EC, Moretti MMS, Gomes E, Bonilla-Rodriguez GO (2018). Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7. Biocatalysis and Agricultural Biotechnology 13:311-318. 
Crossref

 
 

Castro AM, Pedro KCNR, Cruz JC, Ferreira MC, Leite SGF, Junior NP (2010). Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin. Applied Biochemistry of Biotechnology 162:2111-2122. 
Crossref

 
 

Díaz-Malváez FI, García-Almendárez BE, Hernández-Arana A, Amaro-Reyes A, Regalado-González C (2013). Isolation and properties of β-xylosidase from Aspergillus niger GS1 using corn pericarp upon solid state fermentation. Process Biochemistry 48:1018-1024. 
Crossref

 
 

Garcia NFL, Santos FRS, Gonçalves FA, Paz MF, Fonseca GG, Leite RSR (2015). Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract. Electronic Journal of Biotechnology 18:314-319. 
Crossref

 
 

Gottschalk LMF, Oliveira RA, Bon EPS (2010). Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochemical Engineering Journal 51:72-78. 
Crossref

 
 

Grigorevski-Lima AL, Oliveira MMQ, Nascimento RP, Bon EPS, Coelho RRR (2013). Production and partial characterization of cellulases and xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Applied Biochemistry of Biotechnology 169:1373-1385. 
Crossref

 
 

Guerfali M, Gargouri A, Belghith H (2011). Catalytic properties of Talaromyces thermophilus α-L-arabinofuranosidase and its synergistic action with immobilized endo-β-1,4-xylanase. Journal of Molecular Catalysis B: Enzymes 68:192-199. 
Crossref

 
 

Hanada RE, Gasparotto L, Pereira JCR (2002). Esporulação de Mycosphaerella fijiensis em diferentes meios de cultura. Fitopatologia Brasileira 27:170-173. 
Crossref

 
 

Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985). Genetic Manipulation of Streptomyces, A Laboratory Manual. The John Innes Institute, Norwich, United Kingdom. pp. 50-110.

 
 

Jiang X, Geng A, He N, Li Q (2011). New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of Bioscience and Bioengineering 111:121-127. 
Crossref

 
 

Kirikyali N, Connerton IF (2014). Heterologous expression and kinetic characterisation of Neurospora crassa β-xylosidase in Pichia pastoris. Enzyme and Microbial Technology 57:63-68. 

 
 

Knob A, Carmona EC (2009). Cell-associated acid β-xylosidase production by Penicillium sclerotiorum. New Biotechnology 26:60-67. 
Crossref

 
 

Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G (2008). Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology 43:48-55. 
Crossref

 
 

Ma L, Zhang J, Zou G, Wang C, Zhou Z (2011). Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme and Microbial Technology 49:366-371. 
Crossref

 
 

Mandels M, Weber J (1969). The production of cellulases. In: Cellulases and their applications. Advances in Chemistry Series 95:391-414.
Crossref

 
 

Martins MP, Ventorim RZ, Coura RR, Maitan-Alfenas GP, Alfenas RF, Guimarães VM (2018). The β-xylosidase from Ceratocystis fimbriata RM35 improves the saccharification of sugarcane bagasse. Biocatalysis and Agricultural Biotechnology 13:291-298. 
Crossref

 
 

Oliveira MMQ, Grigorevski-Lima AL, Franco-Cirigliano MN, Nascimento RP, Bon EPS, Coelho RRR (2014). Trichoderma atroviride 102C1 mutant: A high endoxylanase producer for assisting lignocellulosic material degradation. Journal of Microbial and Biochemical Technology 6:236-241. 
Crossref

 
 

Paredes RS, Barros RRO, Inoue H, Shinichi Y, Bon EPS (2015). Production of xylanase, α-L-arabinofuranosidase, β-xylosidase, and β-glucosidase by Aspergillus awamori using the liquid stream from hot-compressed water treatment of sugarcane bagasse. Biomass Conversion and Biorefinery 5:299-307. 
Crossref

 
 

Pereira JC, Giese EC, Moretti MMS, Gomes ACS, Perrone OM, Boscolo M, Da Silva R, Gomes E, Martins DAB (2017). Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities. In: Enzyme Inhibitors and Activators. InTech pp. 139-164. 
Crossref

 
 

Rasmussen CV, Hansen HB, Hansen A, Larsen LM (2001). pH-, temperature- and time-dependent activities of endogenous endo-β-D-xylanase, β-D-xylosidase and α-L-arabinofuranosidase in extracts from ungerminated rye (Secalecereale L.) grain. Journal of Cereal Science 34:49-60. 
Crossref

 
 

Shinozaki A, Hosokawa S, Nakazawa M, Ueda M, Sakamoto T (2015). Identification and characterization of three Penicillium chrysogenum α-L-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzyme and Microbial Technology 73-74:65-71. 
Crossref

 
 

Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A (2011). Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121expressed differentially in response to carbon sources. Process Biochemistry 46:1521-1524. 
Crossref

 
 

Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology 127:500-507.
Crossref

 
 

Tarayre C, Bauwens J, Brasseur C, Mattéotti C, Millet C, Guiot PA, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P (2015). Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. Environmental Science and Pollution Research 22:4369-4382. 
Crossref

 
 

Temer B, Terrasan CRF, Carmona EC (2014). α-L-arabinofuranosidase from Penicillium janczewskii: Production with brewer's spent grain and orange waste. African Journal of Biotechnology 13:1796-1806. 
Crossref

 
 

Terrasan CRF, Temer B, Duarte MCT, Carmona EC (2010). Production of xylanolytic enzymes by Penicillium janczewskii. Bioresource Technology 101:4139-4143.
Crossref

 
 

Wakiyama M, Yoshihara K, Hayashi S, Ohta K (2008). Purification and properties of an extracellular β-xylosidase from Aspergillus japonicus and sequence analysis of the encoding gene. Journal of Bioscience and Bioengineering 106:398-404. 
Crossref

 
 

Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B (2014). Two xylose tolerant GH43 bifunctional β-xylosidase / α- arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chemistry 148:381-387. 
Crossref

 
 

Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B (2015). A novel bifunctional GH51 exo‑α‑l‑arabinofuranosidase / endo‑xylanase from Alicyclobacillus sp. A4 with significant biomass‑degrading capacity. Biotechnology for Biofuels 197:2-11. 
Crossref

 
 

Zampieri D, Guerra L, Camassola M, Dillon AJPS (2013). Secretion of endoglucanases and b-glucosidases by Penicillium echinulatum 9A02S1 in presence of different carbon sources. Industrial Crops and Products 50:882-886. 
Crossref