African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

The role of N-terminal module of PhyB in modulating root and hypocotyl growth length in Arabidopsis

Njimona Ibrahim
  • Njimona Ibrahim
  • Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of Scientific Research and Innovation, P. O. Box 6133, Yaounde, Cameroon.
  • Google Scholar
Baluška František
  • Baluška František
  • Institute of Cellular and Molecular Botanics (IZMB), University of Bonn, Bonn, Germany.
  • Google Scholar


  •  Received: 20 May 2020
  •  Accepted: 24 September 2021
  •  Published: 30 June 2022

References

Briggs WR, Lin CT (2012). Photomorphogenesis-from one photoreceptor to 14:40 years of progress. Molecular Plant 5(3):531-532.
Crossref

 

Chang C, Stewart RC (1998). The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiology 117(3):723-731.
Crossref

 

Franklin KA, Quail PH (2010). Phytochrome functions in Arabidopsis development. Journal of Experimental Botany 61(1):11-24.
Crossref

 

Galva˜o VC, Fankhauser C (2015). Sensing the light environment in plants: Photoreceptors and early signaling steps. Current Opinion in Neurobiology 34:46-53.
Crossref

 

Gilroy S, Jones DL (2000). Through form to function: root hair development and nutrient uptake. Trends in Plant Science 5(2):56-60.
Crossref

 

Goosey L, Palecanda L, Sharrock RA (1997). Differential patterns of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome genes. Plant Physiology 115(3):959-969.
Crossref

 

Josse EM, Foreman J, Halliday KJ (2008). Paths through the phytochrome network. Plant, Cell and Environment 31(5):667-678.
Crossref

 

Khoury GA, Baliban RC, Floods CA (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Reports 1:90.
Crossref

 

Kiss JZ, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE (2003). Root phototropism: how light and gravity interact in shaping plant form. Gravitational and Space Research 16(2):55-60.

 

Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Nagy F (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. The Plant Cell 14(7):1541-1555.
Crossref

 

Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009). High Temperature-Mediated Adaptations in Plant Architecture Require the bHLH Transcription Factor PIF4. Current Biology 19(5):408-413.
Crossref

 

Li FW, Mathews S (2016). Evolutionary aspects of plant photoreceptors. Journal of Plant Research 129(2):115-122.
Crossref

 

Mancinelli AL (1994). The physiology of phytochrome action. In: Kendrick RE, 896 Kronenberg GHM eds. Photomorphogenesis in Plants. Dordrecht: Springer897 Netherlands pp. 211-269.
Crossref

 

Matsushita T, Mochizuki N, Nagatani A (2003). Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424(6948):571-574.
Crossref

 

Matthews HR (1995). Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacology and Therapeutics 67(3):323-350.
Crossref

 

Mijakovic I, Grangeasse C, Turgay K (2016). Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiology Reviews 40(3):398-417.
Crossref

 

Njimona I, Lamparter T (2011). Temperature effects on Agrobacterium phyto chrome Agp1. PLoS One 6(10):e2597.
Crossref

 

Njimona I, Yang R, Lamparter T (2014) Temperature effects on bacterial phytochrome. PloS ONE 9(10):e109794.
Crossref

 

Oka Y, Matsushita T, Mochizuki N, Suzuki T, Tokutomi S (2004). Functional Analysis of a 450 - Amino Acid N-Terminal Fragment of Phytochrome B in Arabidopsis. The Plant Cell 16(8):2104-2116.
Crossref

 

Palágyi A, Terecskei K, Adám E, Kevei E, Kircher S, Mérai Z, Kozma-Bognár L (2010). Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. Plant Physiology 153(4):1834-1845.
Crossref

 

Park CM, Bhoo SH, Song PS (2000). Inter-domain crosstalk in the phytochrome molecules. Seminars in Cell and Developmental Biology 11(6):449-56.
Crossref

 

Poppe C, Sweere U, Drumm-Herrel H, Schäfer E (1998). The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant Journal 16(4):465-471.
Crossref

 

Rockwell NC, Su YS, Lagarias JC (2006). Phytochrome Structure and Signaling Mechanisms. Annual Review of Plant Biology 57(1):837-858.
Crossref

 

Sharrock RA, Clack T (2002). Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiology 130(1):442-456.
Crossref

 

Somers DE, Quail PH (1995). Phytochrome-Mediated Light Regulation of PHYA- and PHYB-GUS Transgenes in Arabidopsis thaliana Seedlings. Plant Physiology 107(2):523-534.
Crossref

 

Tóth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L (2001). Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiology 127(4):1607-1616.
Crossref

 

Woolley JT, Stoller EW (1978). Light Penetration and Light-induced Seed Germination in Soil. Plant Physiology 61(4):597-600.
Crossref

 

Yang S, Jang IC, Henriques R, Chua NH (2009). Far-Red Elongated Hypocotyl 1 and FHY1-like associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell 21(5):1341-1359.
Crossref