African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Genomic composition factors affect codon usage in porcine genome

Khobondo, J. O.*
  • Khobondo, J. O.*
  • Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, P. O. Box 536, 20115 Egerton, Kenya.
  • Google Scholar
Okeno, T. O.
  • Okeno, T. O.
  • Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, P. O. Box 536, 20115 Egerton, Kenya; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, P. O. Box 50, 8830 Tjele, Denmark.
  • Google Scholar
Kahi, A. K.
  • Kahi, A. K.
  • Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, P. O. Box 536, 20115 Egerton, Kenya.
  • Google Scholar


  •  Received: 18 August 2014
  •  Accepted: 15 January 2015
  •  Published: 28 January 2015

References

Basak S, Ghosh TC (2005). On the origin of genomic adaptation at high temperature for prokaryotic organisms. Biochem. Biophys. Res. Comun. 330:629-632.
Crossref

 

Behura SK, Severson DW (2013a). Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol. Rev. 88:49-61.
Crossref

 
 

Bulmer M (1991). The Selection-Mutation-Drift Theory of Synonymous Codon Usage. Gen.129:897-907.

 
 

Gagnaire PA, Normandeau E, Bernatchez L (2012). Comparative genomics reveals adaptive protein evolution and a possible cytonuclear incompatibility between European and American eels. Mol. Biol. Evol. 29(10):2909-2919.
Crossref

 
 

Goetz RM, Fuglsang A (2005). Correlation of codon bias measures with mRNA levels: analysis of transcriptome data from Escherichia coli. Biochem. Biophysic. Res. Commun. 327:4-7.
Crossref

 
 

Hahn MW, Kern AD (2005). Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22:803-806.
Crossref

 
 

Hershberg R, Petrov DA (2010). Evidence That Mutation Is Universally Biased towards AT in Bacteria, PLoS Genet. e1001115.
Crossref

 
 

Ikemura T (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2:13-34.
Pubmed

 
 

Ingvarsson PK (2007). Gene Expression and Protein Length Influence Codon Usage and Rates of Sequence Evolution in Populus tremula. Mol. Biol. Evol. 24:836-844.
Crossref

 
 

Jia R, Cheng A, Wang M, Xin H, Guo Y, Zhu D, Qi X, Zhao L, Ge H, Chen X (2009). Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes. 38:96-103.
Crossref

 
 

Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T (2001). Codon usage and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J. Mol. Evol. 53:290-298.
Crossref

 
 

Karlin S, Mrázek J, Campbell AM (1997). Compositional biases of bacterial genomes and evolutionary implications. J. Bacteriol. 179:3899-3913.
Pubmed

 
 

Knight R, Freeland S, Landweber L (2001). A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. 2:1001-1013.

 
 

Morton BR, Wright SI (2007). Selective constraints on codon usage of nuclear genes from Arabidopsis thaliana. Mol. Biol. Evol. 24:122-129.
Crossref

 
 

Ninio J (1991). Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics. 129:957-962.
Pubmed

 
 

Parmley JL, Hurst LD (2007). Exonic Splicing Regulatory Elements Skew Synonymous Codon Usage near Intron-exon Boundaries in Mammals. Mol. Biol. Evol. 24:1600-1603.
Crossref

 
 

Qian W, Yang JR, Pearson NM, Maclean C, Zhang J (2012). Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet. 8. e1002603.
Crossref

 
 

Qin Z, Zhengqiu Cai Z, Guangmin Xia G, Wang, M (2013). Synonymous codon usage bias is correlative to intron number and shows disequilibrium among exons in plants. BMC Genomics 14:56-67.
Crossref

 
 

Qiu S, Bergero R, Zeng K, Charlesworth D (2011). Patterns of codon usage bias in Silene latifolia. Mol. Biol. Evol. 28:771-780.
Crossref

 
 

Rao Y, Wu G, Wang Z, Chai X, Nie Q, Zhang X (2011). Mutation bias is the driving force of codon usage in the Gallus gallus genome. DNA Res.18:499-512.
Crossref

 
 

Reis MD, Savva R, Wernisch L (2004). Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32:5036-5044.
Crossref

 
 

Sharp PM, Bailes E, Grocock RJ, Peden F, Sockett RE (2005). Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33:1141-1153.
Crossref

 
 

Stoletzki N, Eyre-Walker A (2007). Synonymous Codon Usage in Escherichia coli: Selection for Translational Accuracy. Mol. Biol. Evol. 24:374-381.
Crossref

 
 

Waldman YY, Tuller T, Keinan A, Ruppin E (2011). Selection for Translation Efficiency on Synonymous Polymorphisms in Recent Human Evolution. Genome Biol. Evol. 3:749-761.
Crossref

 
 

Whittle CA, Sun Y, Johannesson H (2012). Genome-wide selection on codon usage at the population level in the fungal model organism Neurospora crassa. Mol. Biol. Evol. 29(8):1975-1986.
Crossref

 
 

Wright F (1990). The 'effective number of codons' used in a gene. Gen. 87:23-29.
Crossref

 
 

Zhang Q, Zhao S, Chen H, Liu X, Zhang L and Li, F (2009). Analysis of the codon use frequency of AMPK family genes from different species. Mol. Biol. Reports 36:513-519.
Crossref

 
 

Zhao S, Zhang Q, Chen Z, Zhao Y, Zhong J (2007). The Factors Shaping Synonymous Codon Usage in the Genome of Burkholderia mallei. J. Gen. Genomics. 34:362-372.
Crossref