African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Improved SSRs-based genetic diversity assessment of coconuts (Cocos nucifera L) along the coast of Kenya

Masha Justus C.
  • Masha Justus C.
  • Pwani University, P. O. BOX 195-80108, Kilifi, Kenya.
  • Google Scholar
Muhammed Najya
  • Muhammed Najya
  • Pwani University, P. O. BOX 195-80108, Kilifi, Kenya.
  • Google Scholar
Njung’e Vincent
  • Njung’e Vincent
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P. O. Box 39063-00100, Nairobi, Kenya.
  • Google Scholar
Oyoo Maurice E.
  • Oyoo Maurice E.
  • Department of Crops, Horticulture and soil sciences, Egerton University, P. O. Box 536-20115, Egerton, Kenya.
  • Google Scholar
Miheso Manfred
  • Miheso Manfred
  • Kenya Agricultural and Livestock Research Organization - Food Crops Research Institute, Njoro, Kenya.
  • Google Scholar


  •  Received: 21 July 2020
  •  Accepted: 26 July 2022
  •  Published: 30 November 2022

References

Amiteye S (2021). Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon 7(10):e08093.
Crossref

 

Batugal P, Bourdeix R, Baudouin L (2009). Coconut breeding. In: Priyadarshan. (P.M., Ed.) Breeding Plantation Tree Crops: Tropical Species pp. 327-376.
Crossref

 

Bourdeix R, Prades A (2018). A Global Strategy for the Conservation and Use of Coconut Genetic Resources, 2018-2028. Bioversity International ISBN 13:978-92-9043-984-4

 

Burton J (2021). The world leaders in coconut production (2021). Access on: Jan. 30, 2022. Available at:

View

 

Caro RES, Cagayan J, Gardoce RR, Manohar A (2022). Mining and validation of novel simple sequence repeat (SSR) markers derived from coconut (Cocos nucifera L.) genome assembly. Journal of Genetic Engineering and Biotechnology 20(1):1-14.
Crossref

 

Christenhusz MJM, Byng JW (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201-217.
Crossref

 

Dasanayaka PN, Evarad JM, Karunayaka EH, Nandadasa HG (2009). Analysis of coconut (Cocos nucifera L) diversity using microsatellite markers with emphasis on management and utilization of genetic resources. Journal of the National Science Foundation of Sri Lanka 37(2):99-109.
Crossref

 

Dong H, Zhang LJ, Zhang MY, Jiang N, Yu HL, Song CY, Tan Q (2017). Genetic diversity and fingerprint profiles of Chinese major Lentinulaedodes cultivars based on SSR markers. Microbiology China 44(6):1427-1436.

 

George ML, Angels J (2008). Global coconut genetic resources conservation strategies and priority activities for 2005-2015, Malaysia. Retrieved from

View

 

Harries HC (1978). The evolution, dissemination and classification of Cocos nucifera L. The botanical Review 44(3):265-319.
Crossref

 

Hamrick JL, Godt MJW (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 35(1345):1291-1298.
Crossref

 

Hamrick JL, Godt MJV, Sherman-Broyles SL (1992). Factors influencing levels of genetic diversity in woody plant species. New Forests 6(1-4):95-124
Crossref

 

Huang YY, Matzke AJM, Matzke M (2013). Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS ONE 8(8):e74736.
Crossref

 

Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Van de Wiel C, Karp A (1997). Reproducibility testing of RAPD, AFLP and SSRs markers in plants by a network of European laboratories. Molecular Breeding 3(5):381-390.

 

Kenya National Bureau of Statistics (KNBS) (2019). 2019 Kenya Population and Housing Census. Volume III: Distribution of Population by Age and Sex. P 12. December 2019. Accessed from:

View

 

Koumi P, Green HE, Hartley S, Jordan D, Lahec S, Livett RJ,Ward DM (2004). Evaluation and validation of the ABI 3700, ABI 3100, and the MegaBACE 1000 capillary array electrophoresis instruments for use with short tandem repeat microsatellite typing in a forensic environment. Electrophoresis 25(14):2227-2241.
Crossref

 

Lebrun P, N'cho YP, Seguin M, Grivet L, Baudouin L (1998). Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101(1):103-108.
Crossref

 

Liu K, Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128-2129.
Crossref

 

Manimekalai R, Nagarajan P (2006). Assessing genetic relationships among coconut (Cocos nucifera L.) accessions using inter simple sequence repeat markers. Scientia Horticulturae 108(1):49-54.
Crossref

 

Martial YS, Louis KK, N'Da Desire PO, Noel KK, Emmanuel IA, Sylvere SR, Arsene ZB (2013). Assessment of the genetic diversity conservation of three tall coconut (Cocos nucifera L) regenerated by controlled pollination using microsattelite markers. African Journal of Biotechnology 12(20):2808-2815.

 

Martinez RT, Baudouin L, Berger A, Dollet M (2009). Characterisation of the genetic diversity of the tall coconut (Cocos nucifera L) using microsatellitemarkers. Tree Genetics and Genomes 6(1):73-81.
Crossref

 

Masumbuko L, Sinje S, Kulaya A (2014). Genetic diversity and structure of East African tall coconuts in Tanzania using RAPD markers. Open Journal of Genetics 4:175-181.
Crossref

 

Mckeon TA, Hayes DG, Hildebrand DF, Weselake RJ (2016). Industrial oil crops. Elsevier ISBN-13:978-1893997981

 

Meerow AW, Wisser RJ, Brown SJ, Kuhn DN, Schnell RJ, Broschat TK (2003). Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theoretical and Applied Genetics 106(4):715-726.
Crossref

 

Mueller UG, Wolfenbarger LLR (1999). AFLP genotyping and fingerprinting. Trends in Ecology and Evolution 14(10):389-394.
Crossref

 

Mwachiro EC, Gakure RW (2011). Factors affecting the coconut industry from benefitting the indigenous communities of Kilifi district, Kenya. I International Journal of Humanities and Social Science 1(4):1-17.

 

Oyoo ME, Muhammed N, Githiri SM, Ojwang PO, Muniu FK, Masha E, Owuoche J (2015). In-situ morphological characterization of coconut in the coastal lowlands of Kenya. African Journal of Crop Science 9(2):65-74.
Crossref

 

Oyoo ME, Muhammed N, Cyrus KN, Githiri SM (2016). Assessment of the genetic diversity of Kenyan coconut germplasm using simple sequence repeat (SSR) markers. African Journal of Biotechnology 15(40):2215-2223.
Crossref

 

Perera L, Russell JR, Provan J, Powell W (2003). Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132(1):121-128.
Crossref

 

Perera L, Russell JRR, Provan J, Powell W (2000). Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43(1)15-21.
Crossref

 

Perera L, Russell JR, Provan J, Powell W (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Molecular Ecology 8(2):344-346.

 

Perrier X, Jacquemoud-Collet JP (2006). DARwin software. http://darwin.cirad.fr/darwin

 

Rao NK (2004). Plant genetic resources: Advancing conservation and use through Biotechnology. African Journal of Biotechnology 3(2):136-145.
Crossref

 

Rao VR, Tobby A (2002). Genetic diversity, conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68(1):1-19.
Crossref

 

Rivera R, Edwards KJ, Barker JHA, Arnold GM, Ayad G, Hodgkin T, Karp A (1999). Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42(4):668-675.
Crossref

 

Teulat B, Aldam C, Trehin R, Lebrun P, Barker JH, Arnold GM, Rognon F (2000). An analysis of genetic diversity in coconut (Cocos nucifera L) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theoretical and Applied Genetics 100(5):764-771.
Crossref

 

Vemireddy LR, Archak S, Nagaraju J (2007). Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryza sativa). Journal of Agricultural and Food Chemistry 55(20):8112-8117.
Crossref

 

Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003). A Low-Cost, High-Throughput Polyacrylamide Gel Electrophoresis System for Genotyping with Microsatellite DNA Markers. Crop science 43(5):1828-1832.
Crossref

 

Wang X, Rinehart T, Wadl P, et al (2009). A new electrophoresis technique to separate microsatellite alleles. African Journal of Biotechnology 8(11):2432-2436.

 

Wekesa C, Ongugo P, Ndalilo L, Amur A, Mwalewa S, Swiderska K (2017). Smallholder farming systems in coastal Kenya: key trends and innovations for resilience IIED Country Report. IIED, London. International Institute for Environment and Development.

View

 

Wu Y, Yaodong Y, Qadri R, Iqbal A, Li J, Fan H, Wu Y (2019). Development of SSR markers for coconut (Cocos nucifera L.) by selectively amplified microsatellite (SAM) and its applications. Tropical Plant Biology 12(1):32-43.
Crossref

 

Xiao Y, Luo Y, Yang Y, Fan H, Xia W, Mason S, Qiao F (2013). Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Plant Omics Journal 6(3):193-200.

 

Yao SD, Konan JL, Pokou ND, Sie RS, Koumane JN, Issali AE, Zoro BI (2013). Assessment of the genetic diversity conservation in three tall coconut accessions regenerated by controlled pollination using microsatellite markers. African Journal of Biotechnology 12(20):2808-2815.