African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12497

Full Length Research Paper

Rhizosphere competence and abiotic stress tolerance of commercially sold Pseudomonas fluorescens biofertilizers: Implications for their bioremediation potential

Schapira Jessica
  • Schapira Jessica
  • School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa.
  • Google Scholar
Rumbold Karl
  • Rumbold Karl
  • School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa.
  • Google Scholar
Bolhar Robert
  • Bolhar Robert
  • School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa.
  • Google Scholar
Master Sharad
  • Master Sharad
  • School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa.
  • Google Scholar
Le Bras Loic
  • Le Bras Loic
  • School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa.
  • Google Scholar


  •  Received: 18 March 2022
  •  Accepted: 26 July 2022
  •  Published: 31 August 2022

References

Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015). Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation and Biodegradation 3(1):28-39.
Crossref

 

Ahmad S, Lee SY, Kong HG, Jo EJ, Choi HK, Khan R, Lee SW (2016). Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. PloS One 11(8):e0160845.
Crossref

 

Barathi S, Vasudevan N (2001). Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environment International 26(5-6):413-416.
Crossref

 

Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology 96(9):1049-1055.
Crossref

 

Berg G (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and Biotechnology 84(1):11-18.
Crossref

 

Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, Rajkumar M (2020). Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521.
Crossref

 

Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, Shukla P (2020). Techniques for improving formulations of bioinoculants. 3 Biotech 10(5):1-9.
Crossref

 

Cornelis P (2010). Iron uptake and metabolism in pseudomonads. Applied Microbiology and Biotechnology 86(6):1637-1645.
Crossref

 

David BV, Chandrasehar G, Selvam PN (2018). Chapter 10-Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop Improvement through Microbial Biotechnology; Prasad R, Gill SS, Tuteja N, Eds.; Elsevier: Amsterdam, The Netherlands pp. 221-243. ISBN 978-0-444-63987-5.
Crossref

 

Gavrilescu M (2010). Environmental biotechnology: achievements, opportunities and challenges. Dynamic Biochemistry, Process Biotechnology and Molecular Biology 4(1):1-36.

 

Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001). Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: A community approach for the improved selection of rhizosphere competent bacteria. Plant and Soil 232(1):181-193.
Crossref

 

Goldberg JB (2000). Pseudomonas: Global bacteria. Trends in Microbiology 8(2):55-57.
Crossref

 

Goswami M, Deka S (2020). Plant growth-promoting rhizobacteria-Alleviators of abiotic stresses in soil: A review. Pedosphere 30(1):40-61.
Crossref

 

Hider RC, Kong X (2010). Chemistry and biology of siderophores. Natural Product Reports 27(5):637-657.
Crossref

 

Iqbal M, Edyvean RGJ (2004). Biosorption of lead, copper and zinc on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering 17(2):217-223.
Crossref

 

Janek T, Lukaszewicz M, Rezanka T, Krasowska A (2010). Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technology 101(15):6118-6123.
Crossref

 

Jeyasingh J, Philip L (2005). Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. Journal of Hazardous Materials 118(1-3):113-120.
Crossref

 

Juhasz AL, Naidu R (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzopyrene. International Biodeterioration & Biodegradation 45(1-2):57-88.
Crossref

 

Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA (2020). Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy 10(11):1683.
Crossref

 

Kloepper J, Ryu C, Zhang S (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259-1266.
Crossref

 

Kumar VSK, Shahi S, Singh S (2018). Bioremediation: an eco-sustainable approach for restoration of contaminated sites. Microbial bioprospecting for sustainable development. Springer 115-136.
Crossref

 

Kraemer SM (2004). Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Sciences 66(1):3-18.
Crossref

 

Mrozik A, Piotrowska-Seget Z (2010). Bioaugmentation as a strategy for cleaning up soils contaminated with aromatic compounds. Microbiological Research 165(5):363-75.
Crossref

 

Nadeem SM, Naveed M, Ayyub M, Khan MY, Ahmad M, Zahir ZA (2016). Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: A Review. Soil & Environment 35(2):106-145.

 

Nazli F, Mustafa A, Ahmad M, Hussain A, Jamil M, Wang X, Shakeel Q, Imtiaz M, Esawi MAE (2020). A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability 12(21):9056.
Crossref

 

Palleroni NJ, Cornelis P (2008). The road to the taxonomy of Pseudomonas. Pseudomonas: Genomics and Molecular Biology, Caister Academic Press, UK pp.1-18.

 

Palleroni NJ (2010). Pseudomonas. Topley and Wilson's Microbiology and Microbial Infections, John Wiley & Sons, Limited.
Crossref

 

Raaijmakers JM, Vlami M, de Souza JT (2002). Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81(1-4):537-547.
Crossref

 

Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J (2022). Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 27(4):1-31.
Crossref

 

Robertson M, Hapca SM, Moshynets O, Spiers AJ (2013). Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie Van Leeuwenhoek 103(1):251-259.
Crossref

 

Roca C, Olsson L (2001). Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition. Journal of Biotechnology 86(1):39-50.
Crossref

 

Sánchez-Contreras M, Mart?n M, Villacieros M, O'Gara F, Bonilla I, Rivilla R (2002). Phenotypic Selection and Phase Variation Occur during Alfalfa Root Colonization by Pseudomonas fluorescens F113. Journal of Bacteriology 184(6):1587-1596.
Crossref

 

Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MdC, Glick BR (2021). Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 10(6):475.
Crossref

 

Shinwari KI, Shah A, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O, Jamil M (2015). Application of plant growth promoting rhizobacteria in bioremediation of heavy metal Polluted Soil. Asian Journal of Multidisciplinary Studies 3(4):179-185.

 

Soderholm P (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth 3(1):1-11.
Crossref

 

Sousa AM, Machado I, Nicolau A, Pereira MO (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods 95(3):327-335.
Crossref

 

Thompson IP, Van der Gast CJ, Ciric L, Singer AC (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology 7(7):909-915.
Crossref

 

Van den Broek D, Bloemberg GV, Lugtenberg B (2005). The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environmental Microbiology 7(11):1686-1697.
Crossref

 

Weller D (2007). Pseudomonas biocontrol agents of soil-borne pathogens: looking back over 30 Years. Phytopathology 97(2):250-256.
Crossref

 

Whipps JM (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52(suppl_1):487-511.
Crossref

 

Wu CH, Wood TK, Mulchandani A, Chen W (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology 72(2):1129-1134.
Crossref