Full Length Research Paper
References
Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015). Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation and Biodegradation 3(1):28-39. |
|
Ahmad S, Lee SY, Kong HG, Jo EJ, Choi HK, Khan R, Lee SW (2016). Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. PloS One 11(8):e0160845. |
|
Barathi S, Vasudevan N (2001). Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environment International 26(5-6):413-416. |
|
Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology 96(9):1049-1055. |
|
Berg G (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and Biotechnology 84(1):11-18. |
|
Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, Rajkumar M (2020). Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521. |
|
Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, Shukla P (2020). Techniques for improving formulations of bioinoculants. 3 Biotech 10(5):1-9. |
|
Cornelis P (2010). Iron uptake and metabolism in pseudomonads. Applied Microbiology and Biotechnology 86(6):1637-1645. |
|
David BV, Chandrasehar G, Selvam PN (2018). Chapter 10-Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop Improvement through Microbial Biotechnology; Prasad R, Gill SS, Tuteja N, Eds.; Elsevier: Amsterdam, The Netherlands pp. 221-243. ISBN 978-0-444-63987-5. |
|
Gavrilescu M (2010). Environmental biotechnology: achievements, opportunities and challenges. Dynamic Biochemistry, Process Biotechnology and Molecular Biology 4(1):1-36. |
|
Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001). Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: A community approach for the improved selection of rhizosphere competent bacteria. Plant and Soil 232(1):181-193. |
|
Goldberg JB (2000). Pseudomonas: Global bacteria. Trends in Microbiology 8(2):55-57. |
|
Goswami M, Deka S (2020). Plant growth-promoting rhizobacteria-Alleviators of abiotic stresses in soil: A review. Pedosphere 30(1):40-61. |
|
Hider RC, Kong X (2010). Chemistry and biology of siderophores. Natural Product Reports 27(5):637-657. |
|
Iqbal M, Edyvean RGJ (2004). Biosorption of lead, copper and zinc on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering 17(2):217-223. |
|
Janek T, Lukaszewicz M, Rezanka T, Krasowska A (2010). Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technology 101(15):6118-6123. |
|
Jeyasingh J, Philip L (2005). Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. Journal of Hazardous Materials 118(1-3):113-120. |
|
Juhasz AL, Naidu R (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzopyrene. International Biodeterioration & Biodegradation 45(1-2):57-88. |
|
Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA (2020). Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy 10(11):1683. |
|
Kloepper J, Ryu C, Zhang S (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259-1266. |
|
Kumar VSK, Shahi S, Singh S (2018). Bioremediation: an eco-sustainable approach for restoration of contaminated sites. Microbial bioprospecting for sustainable development. Springer 115-136. |
|
Kraemer SM (2004). Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Sciences 66(1):3-18. |
|
Mrozik A, Piotrowska-Seget Z (2010). Bioaugmentation as a strategy for cleaning up soils contaminated with aromatic compounds. Microbiological Research 165(5):363-75. |
|
Nadeem SM, Naveed M, Ayyub M, Khan MY, Ahmad M, Zahir ZA (2016). Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: A Review. Soil & Environment 35(2):106-145. |
|
Nazli F, Mustafa A, Ahmad M, Hussain A, Jamil M, Wang X, Shakeel Q, Imtiaz M, Esawi MAE (2020). A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability 12(21):9056. |
|
Palleroni NJ, Cornelis P (2008). The road to the taxonomy of Pseudomonas. Pseudomonas: Genomics and Molecular Biology, Caister Academic Press, UK pp.1-18. |
|
Palleroni NJ (2010). Pseudomonas. Topley and Wilson's Microbiology and Microbial Infections, John Wiley & Sons, Limited. |
|
Raaijmakers JM, Vlami M, de Souza JT (2002). Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81(1-4):537-547. |
|
Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J (2022). Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 27(4):1-31. |
|
Robertson M, Hapca SM, Moshynets O, Spiers AJ (2013). Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie Van Leeuwenhoek 103(1):251-259. |
|
Roca C, Olsson L (2001). Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition. Journal of Biotechnology 86(1):39-50. |
|
Sánchez-Contreras M, Mart?n M, Villacieros M, O'Gara F, Bonilla I, Rivilla R (2002). Phenotypic Selection and Phase Variation Occur during Alfalfa Root Colonization by Pseudomonas fluorescens F113. Journal of Bacteriology 184(6):1587-1596. |
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MdC, Glick BR (2021). Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 10(6):475. |
|
Shinwari KI, Shah A, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O, Jamil M (2015). Application of plant growth promoting rhizobacteria in bioremediation of heavy metal Polluted Soil. Asian Journal of Multidisciplinary Studies 3(4):179-185. |
|
Soderholm P (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth 3(1):1-11. |
|
Sousa AM, Machado I, Nicolau A, Pereira MO (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods 95(3):327-335. |
|
Thompson IP, Van der Gast CJ, Ciric L, Singer AC (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology 7(7):909-915. |
|
Van den Broek D, Bloemberg GV, Lugtenberg B (2005). The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environmental Microbiology 7(11):1686-1697. |
|
Weller D (2007). Pseudomonas biocontrol agents of soil-borne pathogens: looking back over 30 Years. Phytopathology 97(2):250-256. |
|
Whipps JM (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52(suppl_1):487-511. |
|
Wu CH, Wood TK, Mulchandani A, Chen W (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology 72(2):1129-1134. |
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0