African Journal of
Cellular Pathology

OFFICIAL PUBLICATION OF THE SOCIETY FOR CELLULAR PATHOLOGY SCIENTISTS OF NIGERIA
  • Abbreviation: Afr. J. Cell. Path
  • Language: English
  • ISSN: 2449-0776
  • DOI: 10.5897/AJCPath
  • Start Year: 2013
  • Published Articles: 107

Full Length Research Paper

The study of attenuating effects of quercetin on spatial memory impairment and degenerative changes in hippocampus of lead exposed rats

Musa O. Iliyasu
  • Musa O. Iliyasu
  • Department of Anatomy, Faculty of Basic Medical Sciences, Kogi State University, Anyigba, Nigeria.
  • Google Scholar
Sunday A. Musa
  • Sunday A. Musa
  • Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria.
  • Google Scholar
Sunday B. Oladele
  • Sunday B. Oladele
  • Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
  • Google Scholar
Ibrahim A. Iliya
  • Ibrahim A. Iliya
  • Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Federal University Dutse, Nigeria.
  • Google Scholar


  •  Received: 11 April 2021
  •  Accepted: 20 May 2021
  •  Published: 31 May 2021

References

Alan L, Miller ND (1998). Dimercaptosuccinic Acid (DMSA), A Non-Toxic, Water-Soluble Treatment For Heavy Metal Toxicity. Alternative Medicine Review 3(3):199-207.

 

Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Kim MO. (2018). Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer's disease. Molecular Neurobiology 55(7):6076-6093.
Crossref

 

Almeida LACB, deCunha AM, daUrbano MR, Buzzo ML, Camargo AEI, Peixe TS, Aschner M, Barbosa F, daSilva AMR, Paoliello MMB (2019). Blood reference values for metals in a general adult population in southern Brazil. Environmental Research 177:108646.
Crossref

 

Aposhian HV (1983). DMSA and DMPS Water soluble antidotes for heavy metal poisoning. The Annual Review of Pharmacology and Toxicology 23(1):193-215.
Crossref

 

Bindoli A, Valente M, Cavallini L (1985). Inhibitory action of quercetin on xanthine oxidase and xanthine dehydrogenase activity. Pharmacological Research Communications 17(9):831-839.
Crossref

 

Bondan EF, Lallo MA, Trigueiro AH, Ribeiro CP, Sinhorini IL, Graca DL (2006). Delayed Schwann cell and oligodendrocyte remyelination after ethidium bromide injection in the brainstem of Wistar rats submitted to streptozotocin diabetogenic treatment. Brazilian Journal of Medical and Biological Research (5):637-646.
Crossref

 

Boots AW, Haenen GR, Bast A (2008). Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology 585(2-3):325-337.
Crossref

 

Bressler JP, Goldstein GW (1991). Mechanisms of lead neurotoxicity. Biochemical Pharmacology 41(4):479-484.
Crossref

 

Brinck U, Wechsler W (1985). Microscopic examination of hippocampal slices after short term lead exposure in vitro. Neurotoxicology and Teratology 11(6):539-543.
Crossref

 

Colpo GD, Ribeiro FM, Rocha NP, Teixeira, AL (2017). Chapter 42-Animal Models for the Study of Human Neurodegenerative Diseases. In Animal Models for the Study of Human Disease, Academic Press. pp. 1109-1129.
Crossref

 

Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017). Natural products against Alzheimer's disease: pharmaco-therapeutics and biotechnological interventions. Biotechnology Advances 35(2):178-216.
Crossref

 

Feng C, Liu S, Zhou F, Gao Y, Li Y, Du G, Chen Y, Jiao H, Feng J, Zhang Y, Bo D, Li Z, Fan G (2019). Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: Changes in lifespan profiles. Toxicology 411:101-109.
Crossref

 

Fengling P, Kenichi M, Keiichi I, Kyouko M, Yurika T, Kensuke O, Takashi E, Yoshihisa K, Nobuaki E, Katsunori I, Michihiro F (2007). Neuroprotective Effects of Quercetin and Rutin on Spatial Memory Impairment in an 8-Arm Radial Maze Task and Neuronal Death Induced by Repeated Cerebral Ischemia in Rats. Journal of Pharmacological Sciences 104(4):329-334.
Crossref

 

Flora SJS, Dwivedi N, Deb U, Kushwaha P, Lomash V (2014). Effects of co- exposure to arsenic and dichlorvos on glutathione metabolism, neurological, hepatic variables and tissue histopathology in rats. Toxicology Research 3(1):23-31.
Crossref

 

Graziano JH (1986). Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Medical Toxicology 1(3):155-162.
Crossref

 

Guo Y, Bruno RS (2015). Endogenous and exogenous mediators of quercetin bioavailability. Journal of Nutritional Biochemistry 26(3):201-210.
Crossref

 

Heo HJ, Lee CY (2004). Protective Effects of Quercetin and Vitamin C against Oxidative Stress-Induced Neurodegeneration. Journal of Agricultural and Food Chemistry 52(25):7514-7517.
Crossref

 

Husain RS, Cillard J, Cillard P (1987). Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26(9):2489-2491.
Crossref

 

Iliyasu MO, Ibegbu AO, Sambo JS, Musa SA, Akpulu PS (2015). Histopathological changes on the hippocampus of adult Wistar rats exposed to lead acetate and aqueous extract of Psidium guajava leaves. African Journal of Cellular Pathology 5:26-31.

 

Iliyasu MO, Ibegbu AO, Sambo SJ, Musa SA, Akpulu SP, Animoku AA, Mustapha M (2019). The Study of the Behaviour, the Hippocampus and Cerebellar Cortex of Adult Wistar Rats Exposed to Lead and Treatment with Psidium guajava Leaf Extract. IBRO Reports 6:S54-S345.
Crossref

 

Ishige K, Schubert D, Sagara Y (2001). Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radical Biology and Medicine 30(4):433-446.
Crossref

 

Jaako-Movits K, Zharkovsky T, Romantchik O (2005). Developmental lead exposure impairs contextual fear conditioning and reduces adult hippocampal neurogenesis in the rat brain. International Journal of Developmental Neuroscience 23(7):627-635.
Crossref

 

Jett DA, Guilarte TR (1995). Developmental lead exposure alters N-methyl-D-aspartate and muscarinic cholinergic receptors in the rat hippocampus: An autoradiographic study. Neurotoxicology 16(1):7-18.

 

Jiang W, Huang Y, Han N, He F, Li M, Bian Z, Liu J, Sun T, Zhu L (2016). Quercetin suppresses NLRP3 inflammation activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 54(8):592-596.
Crossref

 

Karimipour M, Rahbarghazi R, Tayefi H, Shimia M, Ghanadian M, Mahmoudi J, Bagheri HS (2019). Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. International Journal of Developmental Neuroscience 74:18-26.
Crossref

 

Karri V, Schuhmacher M, Kumar V (2020). A systems toxicology approach to compare the heavy metal mixtures (Pb, As, MeHg) impact in neurodegenerative diseases. Food and Chemical Toxicology 139:111257.
Crossref

 

Kasten-Jolly J, Heo Y, Lawrence DA (2011). Central nervous system cytokine gene expression: Modulation by lead. Journal of Biochemical and Molecular Toxicology 25(1):41-54.
Crossref

 

Khaled R, Khaled H, Mubarak A, Rudolf M, Wolf-Dieter R (2014a). Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Experimental and Toxicologic Pathology 66(1):13-17.
Crossref

 

Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO (2018). Neuroprotective Effect of Quercetin against the Detrimental Effects of LPS in the Adult Mouse Brain. Frontiers in Pharmacology 9:1383.
Crossref

 

Lidsky TI, Schneider JS (2003). Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain 126(1):5-19.
Crossref

 

Mansouri MT, Naghizadeh B, López-Larrubia P, Cauli O (2013). Behavioral deficits induced by lead exposure are accompanied by serotonergic and cholinergic alterations in the prefrontal cortex. Neurochemistry International 62(3):232-239.
Crossref

 

McNamera RK, Skelton RW (1993). The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Research Reviews 18(1):33-49.
Crossref

 

Mesram N, Umamaheshwari P, Reddy KP (2019). Quercetin reverses sodium arsenate induced oxidative stress, behavioural and histological alterations in brain of rat. Journal of Pharmaceutical Sciences and Research 11(6):2267-2274.

 

Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research 36(11):1199-1208.
Crossref

 

Molina HH, Reznick AZ, Kaufman H, Aizenbud D (2015). Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model. Journal of Periodontal Research 50(3):389-396.
Crossref

 

Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J (1993). Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochemical Pharmacology 45(1):13-19.
Crossref

 

Mostafalou S, Abdollahi M (2018). The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology 409(1):44-52.
Crossref

 

Muckter H, Liebl B, Reichl FX (1997). Are we ready to replace dimercaprol (BAL) as an arsenic antidote? Human Experimental Toxicology 16(8):460-465.
Crossref

 

Nageshwar M, Kirankumar N, Rajkiran RB, Chandrashakar RN, Pratap RK (2017). Quercetin treatment against NaF-induced oxidative stress related neuronal and learning changes in developing rats. Journal of King Saud University Science 29(2):221-229.
Crossref

 

Naqi-Syed SZ (2014). Pyramidal layer thinning, shrunken neurons and deep vacuolation in hippocampus due to the organic lead induced toxicity. International Journal of Anatomy and Research 2(2):390-93.

 

Noor AWA, Teoh SL, Srijit D, Mohamad FY, Azian AL, Taty AK (2012). Histological observation of the hippocampus and frontal cortex of experimental Sprague-Dawley rats fed with lead in a dose related manner. British Journal of Medical and Health Sciences 1(1):99-106.

 

Ohno M, Yamamoto T, Watanabe S (1992). Effects of intrahippocampal injection of N -Methyl- d-Aspartate receptor antagonists and scopolamine on working and reference memory assessed in rats by a three-panel runway task. Journal of Pharmacology and Experimental Therapeutics 263:943-950.
Crossref

 

Ossola B, Kaariainen TM, Mannisto PT (2009). The multiple faces of quercetin in neuroprotection. Expert Opinion on Drug Safety 8(4):397-409.
Crossref

 

Patil CS, Singh VP, Satyanarayan PS, Jain NK, Singh A, Kulkarni SK (2003). Protective effect of flavonoids against aging and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology 69(2):59-67.
Crossref

 

Penley SC, Gaudet CM, Threlkeld SW (2013). Use of an eight-arm radial water maze to assess working and reference memory following neonatal brain injury. Journal of Visualized Experiments 82(82):1-7.
Crossref

 

Peters A (1996). Age-related changes in oligodendrocytes in monkey cerebral cortex. Journal of Comparative Neurology 371(1):153-163.
Crossref

 

Sasaki N, Toda T, Kaneko T, Naomichi B, Mitsuyoshi M (2003). Protective effects of flavonoids on the cytotoxicity of linoleic acid hydroperoxide toward rat pheochromocytoma PC12 cells. Chemico-Biological Interactions 145(1):101-16.
Crossref

 

Schneider JS, Mettil W, Anderson DW (2012). Differential effect of postnatal lead exposure on gene expression in the hippocampus and frontal cortex. Journal of Molecular Neuroscience 47(1):76-88.
Crossref

 

Shal B, Ding W, Ali H, Kim YS, Khan S (2018). Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer's disease. Frontiers in Pharmacology 9:548.
Crossref

 

Sheehan D, Hrapchak B (1980). Theory and practice of histotechnology. 2nd Ed, Battelle Press, Ohio pp. 235-237.

 

Sigma-Aldrich Co (2018). Quercetin, Q4951. Material Safety Data Sheet, Version 4.8. Chemie GmbH Riedstrasse 2:1-7.

 

Soltaniniejad K, Kebriaeezadeh A, Minaiee B, Ostad SN, Hosseini R, Azizi E, Abdollahi M (2003). Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain. Human and Experimental Toxicology 22(8):417-423.

 

Spencer JPE (2009). Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes and Nutrition 4(4):243-250.
Crossref

 

Xu J, Yan HC, Yang B, Tong LS, Zou YX, Tian Y (2009). Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats. Journal of Negative Results in BioMedicine 8(1):5.
Crossref

 

Yuhan T, Chao G, Mingyou X, Yanyan L, Liping Z, Di W, Xuefeng Y, Liegang L, Ping Y (2012). Quercetin prevents ethanolinduced dyslipidemia and mitochondrial oxidative damage. Food and Chemical Toxicology 50(5):1194-1200.
Crossref

 

Zaplatic E, Bule M, Zahid S, Shah A, Uddin S, Niaz K (2019). Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sciences 224:109-119.
Crossref

 

Zeng H, Chen Q, Zhao B (2004). Genistein ameliorates β-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radical Biology and Medicine 36(2):180-188.
Crossref

 

Zhou F, Du G, Xie J, Gu J, Jia Q, Fan Y, Yu, H, Zha Z, Wang K, Ouyang L, Shao L, Feng C, Fan G (2020). RyRs mediate lead-induced neurodegenerative disorders through calcium signaling pathways. Science of the Total Environment 701:134901.
Crossref

 

Zook BC, London WT, Wilpizeski CR, Sever JL (1980). Experimental lead paint poisoning in nonhuman primates. III. Pathologic findings; Brain Research 189(2):369-376.