African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1125

Full Length Research Paper

Micro and nanobubbles aided membrane processes

Nachael Mwanga
  • Nachael Mwanga
  • State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
  • Google Scholar
Li Pan
  • Li Pan
  • State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
  • Google Scholar
Salum Kamota
  • Salum Kamota
  • College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
  • Google Scholar
Chanuka Maheshani
  • Chanuka Maheshani
  • UNEP-Institute of Environment and Sustainable Development (IESD), Tongji University, 1239 Siping Road, Shanghai, 200092, China.
  • Google Scholar


  •  Received: 24 February 2024
  •  Accepted: 17 April 2024
  •  Published: 31 May 2024

References

Agarwal A, Ng W J,Liu Y (2013). Cleaning of biologically fouled membranes with self-collapsing microbubbles. Biofouling 29(1):69-76.
Crossref

 

Agarwal A, Ng WJ, Liu Y (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84(9):1175-1180.
Crossref

 

Ahmed AK A, Shi X, Hua L, Manzueta L, Qing W, Marhaba T, Zhang W (2018). Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth. Journal of Agricultural and Food Chemistry 66(20):5117-5124.
Crossref

 

Armstrong MW, Gallego S, Chesters S (2009). Cleaning clay from fouled membranes. Desalination and Water Treatment 10(1-3):108-114.
Crossref

 

Atkinson AJ, Apul OG, Schneider O, Garcia-Segura S, Westerhoff P (2019). Nanobubble Technologies Offer Opportunities To Improve Water Treatment. Accounts of Chemical Research 52(5):1196-1205.
Crossref

 

Bourgeous KN, Darby JL, Tchobanoglous G (2001). Ultrafiltration of wastewater: effects of particles, mode of operation, and backwash effectiveness. Water Research 35(1):77-90.
Crossref

 

Bratby J (2016). Coagulation and flocculation in water and wastewater treatment. IWA publishing.
Crossref

 

Bueno-Tokunaga A, Pérez-Garibay R, Martínez-Carrillo D (2015). Zeta potential of air bubbles conditioned with typical froth flotation reagents. International Journal of Mineral Processing 140:50-57.
Crossref

 

Calgaroto S, Wilberg KQ, Rubio J (2014). On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering 60:33-40.
Crossref

 

Celmer D, Oleszkiewicz JA, Cicek N (2008). Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater. Water Research 42(12):3057-3065.
Crossref

 

Chen JP, Kim SL, Ting YP (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science 219(1):27-45.
Crossref

 

Dayarathne HNP, Choi J, Jang A (2017). Enhancement of cleaning-in-place (CIP) of a reverse osmosis desalination process with air micro-nano bubbles. Desalination 422:1-4.
Crossref

 

Fan K, Huang Z, Lin H, Shen L, Gao C, Zhou G, Hu J, Yang H, Xu F (2022). Effects of micro-/nanobubble on membrane antifouling performance and the mechanism insights. Journal of Cleaner Production 376:134331.
Crossref

 

Fan W, An W, Huo M, Xiao D, Lyu T, Cui J (2021). An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants. Water Research 196:11-7039.
Crossref

 

Fang T Y, Liu C, Tang Y, Khaletski V (2019). Application research of micro and nanobubbles in water pollution control. E3S Web of Conferences (Vol. 136, p. 06028).
Crossref

 

Farid MU, Kharraz JA, Lee CH, Fang JK, St-Hilaire S, An AK (2021). Nanobubble-assisted scaling inhibition in membrane distillation for the treatment of high-salinity brine. Water Research 209:117954.
Crossref

 

Fazel M, Chesters S (2014). RO membrane cleaning using microbubbles at 6,800 m 3 /d wastewater RO plant in UAE. Desalination and Water Treatment 55:1-9.
Crossref

 

Ghadimkhani A, Zhang W, Marhaba T (2016). Ceramic membrane defouling (cleaning) by air Nano Bubbles. Chemosphere 146:379-384.
Crossref

 

Gönder ZB, Arayici S,Barlas H (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology 76(3):292-302.
Crossref

 

Guigui C, Mougenot M, Cabassud C (2003). Air sparging backwash in ultrafiltration hollow fibres for drinking water production. Water Supply 3(5-6):415-422.
Crossref

 

Han G, Chen S, Su S, Huang Y, Liu B, Sun H (2022). A review and perspective on micro and nanobubbles: What They Are and Why They Matter. Minerals Engineering 189:107906.
Crossref

 

Hashimoto K, Onzuka A, Nishijima W, Yamazaki M, Aoki M, Sao T (2022). Effect of fine bubbles for washing of monolith type porous ceramic membranes treating oil-in-water emulsions. Chemosphere 305:135487.
Crossref

 

He X, Li B, Wang P, Ma J (2019). Novel H2O2-MnO2 system for efficient physico-chemical cleaning of fouled ultrafiltration membranes by simultaneous generation of reactive free radicals and oxygen. Water Research 167:115111.
Crossref

 

Hilares RT, Singh I, Meza KT, Andrade GJC,Tanaka DAP (2022). Alternative methods for cleaning membranes in water and wastewater treatment. Water Environment Research 94(4).
Crossref

 

Jankhah S, Berube PR (2013). Power induced by bubbles of different sizes and frequencies on to hollow fibers in submerged membrane systems. Water Research 47(17):6516-6526.
Crossref

 

Jepsen KL Bram MV, Hansen L, Yang Z, Lauridsen SM (2019). Online Backwash Optimization of Membrane Filtration for Produced Water Treatment. Membranes 9(6):68.
Crossref

 

Jia J, Zhu Z, Chen H, Pan H, Jiang L, Su WH, Chen Q, Tang Y, Pan J, Yu K (2023). Full life circle of micro-nano bubbles: Generation, characterization and applications. Chemical Engineering Journal 471.
Crossref

 

Jia W, Ren S, Hu B (2013). Effect of Water Chemistry on Zeta Potential of Air Bubbles. International Journal of Electrochemical Science 8(4):5828-5837.
Crossref

 

Katsoufidou K, Yiantsios S, Karabelas A (2005). A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling. Journal of Membrane Science 266(1-2):40-50.
Crossref

 

Kertész S, Gulyás NS, Al-Tayawi AN, Huszár G, Lennert JR, Csanádi J, Beszédes S, Hodúr C, Szabó T, László Z (2023). Modeling of Organic Fouling in an Ultrafiltration Cell Using Different Three-Dimensional Printed Turbulence Promoters. Membranes (Basel) 13(3).
Crossref

 

Kimura K, Hane Y, Watanabe Y, Amy G, Ohkuma N (2004). Irreversible membrane fouling during ultrafilration of surface water. Water Research 38(14):3431-3441.
Crossref

 

Lateef SK, Soh BZ, Kimura K (2013). Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. Bioresource Technology 150:149-155.
Crossref

 

Lee EJ, Kim YH, Kim HS, Jang A (2015). Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse. Environmental Science and Pollution Research International 22(11):8451-8459.
Crossref

 

Levitsky I, Tavor D, Gitis V (2021). Microbubbles and organic fouling in flat sheet ultrafiltration membranes. Separation and Purification Technology 268.
Crossref

 

Li H, Hu L, Song D, Al-Tabbaa A (2014). Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation. International Journal of Environmental Research and Public Health 11(1):473-486.
Crossref

 

Li H, Hu L, Song D, Lin F (2014). Characteristics of micro?nano bubbles and potential application in groundwater bioremediation. Water Environment Research 86(9):844-851.
Crossref

 

Li P, Takahashi M, Chiba K (2009). Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere 77(8):1157-1160.
Crossref

 

Li P, Wang J, Liao Z, Ueda Y, Yoshikawa K, Zhang G (2022). Microbubbles for Effective Cleaning of Metal Surfaces Without Chemical Agents. Langmuir 38(2):769-776.
Crossref

 

Li Q, Elimelech M (2004). Organic Fouling and Chemical Cleaning of Nanofiltration Membranes:  Measurements and Mechanisms. Environmental Science and Technology 38(17):4683-4693.
Crossref

 

Li X, Yu J, Nnanna A (2011). Fouling mitigation for hollow-fiber UF membrane by sonication. Desalination 281:23-29.
Crossref

 

Liang H, Gong W, Chen J, Li G (2008). Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination 220(1):267-272.
Crossref

 

Lin B, Matinpour H, Malmali M (2023). Evaluation of spacer-induced hydrodynamic mixing using particle image velocimetry: Impact on membrane distillation performance. Desalination 564:116758.
Crossref

 

Luo MH, Yeh K, Situ B, Yu JS, Li BC, Chen ZY (2017). Microbubbles: A Novel Strategy for Chemotherapy. Current Pharmaceutical Design 23(23):3383-3390.
Crossref

 

Lyu T, Wu S, Mortimer RJG, Pan G (2019). Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges. Environmental Science and Technology 53(13):7175-7176.
Crossref

 

Marcelino KR, Ling L, Wongkiew S, Nhan HT, Surendra KC, Shitanaka T, Lu H, Khanal SK (2019). Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges. Critical Reviews in Environmental Science and Technology 53(14):1378-1403.
Crossref

 

Meegoda JN, Aluthgun HS, Batagoda JH (2018). Stability of Nanobubbles. Environmental Engineering Science 35(11):1216-1227.
Crossref

 

Meegoda JN, Hewage SA, Batagoda JH (2019). Application of the Diffused Double Layer Theory to Nanobubbles. Langmuir 35(37):12100-12112.
Crossref

 

Mo J, Lin T, Liu W, Zhang Z, Yan Y (2024). Cleaning efficiency and mechanism of ozone micro-nano-bubbles on ceramic membrane fouling. Separation and Purification Technology 331:125698.
Crossref

 

Mohammad AW, Ng CY, Lim YP, Ng GH (2012). Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food and Bioprocess Technology 5(4):1143-1156.
Crossref

 

Muthukumaran S, Kentish S, Lalchandani S, Ashokkumar M, Mawson R, Stevens GW, Grieser F (2005). The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrasonics Sonochemistry 12(1): 29-35.
Crossref

 

Muthukumaran S, Yang K, Seuren A, Kentish S, Ashokkumar M, Steven GW, Grieser F (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology 39(1):99-107.
Crossref

 

Nguyen H, Le N, Sugai Y, Nguele R, Sreu T (2023). Bubble size distribution and stability of CO2 microbubbles for enhanced oil recovery: effect of polymer, surfactant and salt concentrations. Journal of Dispersion Science and Technology 44(5):795-805.
Crossref

 

Nnanna AA, Sheng C, Conrad K, Crowley G (2015). Performance Assessment of Pre-Filtration Strainer of an Ultrafiltration Membrane System by Particle Size Analysis. ASME International Mechanical Engineering Congress and Exposition. (Volume 57465, p. V07AT09A015). American Society of Mechanical Engineers.
Crossref

 

Oh SH, Kim JM (2017). Generation and stability of bulk nanobubbles. Langmuir 33(15):3818-3823.
Crossref

 

Onishi T, Peng Y, Ji H, Peng G (2023). Numerical simulations of cavitating water jet by an improved cavitation model of compressible mixture flow with an emphasis on phase change effects. Physics of Fluids 35(7).
Crossref

 

Pagureva N, Tcholakova S, Rusanova K, Denkov N, Dimitrova T (2016). Factors affecting the coalescence stability of microbubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 508:21-29.
Crossref

 

Pan Y, He B, Wen B (2021). Effects of surface tension on the stability of surface nanobubbles. Frontiers in Physics 9:731804.
Crossref

 

Park HM, Yoo J, Lee YT (2019). Improved fouling resistance for RO membranes by a surface modification method. Journal of Industrial and Engineering Chemistry 76:344-354.
Crossref

 

Patel AK, Singhania RR, Chen CW, Tseng YS, Kuo CH, Wu CH, Di Dong C (2021). Advances in micro-and nano bubbles technology for application in biochemical processes. Environmental Technology Innovation 23:101729.
Crossref

 

Pourbozorg M, Li T, Law AWK (2016). Effect of turbulence on fouling control of submerged hollow fibre membrane filtration. Water Research 99:101-111.
Crossref

 

Prakash R, Lee J, Moon Y, Pradhan D, Kim SH, Lee HY, Lee J (2023). Experimental Investigation of Cavitation Bulk Nanobubbles Characteristics: Effects of pH and Surface-Active Agents. Langmuir 39(5):1968-1986.
Crossref

 

Ramaswamy K, Marx V, Laser D, Kenny T, Chi T, Bailey M, Sorensen MD, Grubbs RH, Stoller ML (2015). Targeted microbubbles: a novel application for the treatment of kidney stones. BJU International 116(1):9-16.
Crossref

 

Rana D, Matsuura T (2010). Surface modifications for antifouling membranes. Chemical reviews 110(4):2448-2471.
Crossref

 

Rezvani Mahmouee A, Saghravani SF, Dahrazma B (2023). Evaluation of the Anti-Fouling Effects of Micro-Nano Bubbles on the Performance of Reverse Osmosis Membrane. Journal of Environmental Engineering 149(4).
Crossref

 

Rodrigues RT, Rubio J (2003). New basis for measuring the size distribution of bubbles. Minerals Engineering 16(8):757-765.
Crossref

 

Sahu SN, Gokhale AA, Mehra A (2014). Modeling nucleation and growth of bubbles during foaming of molten aluminum with high initial gas supersaturation. Journal of Materials Processing Technology 214(1):1-12.
Crossref

 

Scott K, Mahmood AJ, Jachuck RJ, Hu B (2000). Intensified membrane filtration with corrugated membranes. Journal of Membrane Science 173(1):1-16.
Crossref

 

Serizawa A (2017). MicroNano-Bubbles-Fundamentals-and-Applications. Available at:

View

 

Shan X, Li SL, Fu W, Hu Y, Gong G, Hu Y (2020). Preparation of high performance TFC RO membranes by surface grafting of small-molecule zwitterions. Journal of Membrane Science 608:118209.
Crossref

 

Shorrock CJ, Bird MR (1998). Membrane Cleaning: Chemically Enhanced Removal of Deposits Formed During Yeast Cell Harvesting. Food and Bioproducts Processing 76(1):30-38.
Crossref

 

Stoller M (2011). Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chemical Engineering Journal 168(3):1140-1148.
Crossref

 

Strugholtz S, Sundaramoorthy K, Panglisch S, Lerch A, Brügger A, Gimbel R (2005). Evaluation of the performance of different chemicals for cleaning capillary membranes. Desalination 179(1):191-202.
Crossref

 

Sumikura M, Hidaka M, Murakami H, Nobutomo Y, Murakami T (2007). Ozone micro-bubble disinfection method for wastewater reuse system. Water Science and Technology 56(5):53-61.
Crossref

 

Sun Y, Xie G, Peng Y, Xia W, Sha J (2016). Stability theories of nanobubbles at solid-liquid interface: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects 495:176-186.
Crossref

 

Suwartha N, Syamzida D, Priadi CR, Moersidik SS, Ali F (2020). Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes. Heliyon 6(4):03748.
Crossref

 

Takahashi M (2005). ζ Potential of Microbubbles in Aqueous Solutions:  Electrical Properties of the Gas−Water Interface. The Journal of Physical Chemistry B 109(46):21858-21864.
Crossref

 

Takahashi M, Chiba K, Li P (2007). Formation of Hydroxyl Radicals by Collapsing Ozone Microbubbles under Strongly Acidic Conditions. The Journal of Physical Chemistry B 111(39):11443-11446.
Crossref

 

Temesgen T, Bui TT, Han M, Kim TI, Park H (2017). Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science 246:40-51.
Crossref

 

Tian Jy, Xu Yp, Chen Zl, Nan J, Li Gb (2010). Air bubbling for alleviating membrane fouling of immersed hollow-fiber membrane for ultrafiltration of river water. Desalination 260(1-3):225-230.
Crossref

 

Trägårdh G (1989). Membrane cleaning. Desalination 71(3):325-335.
Crossref

 

Tsai J, Kumar M, Chen S, Lin J (2007). Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater. Separation and Purification Technology 58(1):61-67.
Crossref

 

Tsujimoto K, Horibe H (2021). Effect of pH on Decomposition of Organic Compounds Using Ozone Microbubble Water. Journal of Photopolymer Science and Technology 34(5):485-489.
Crossref

 

Tu SC, Ravindran V, Pirbazari M (2005). A pore diffusion transport model for forecasting the performance of membrane processes. Journal of Membrane Science 265(1):29-50.
Crossref

 

Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Makino Y, Kawagoe Y, Shiina T, Oshita S (2010). Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 361(1-3):31-37.
Crossref

 

Wang B, Su H, Zhang B (2021). Hydrodynamic cavitation as a promising route for wastewater treatment-A review. Chemical Engineering Journal 412:128685.
Crossref

 

Wang H, Yang W, Yan X, Wang L, Wang Y, Zhang H (2020). Regulation of bubble size in flotation: A review. Journal of Environmental Chemical Engineering 8(5):104070.
Crossref

 

Wang T, Yang C, Sun P, Wang M, Lin F, Fiallos M, Soon-Thiam K (2024). Generation Mechanism of Hydroxyl Radical in Micro Nano Bubbles Water and Its Prospect in Drinking Water.
Crossref

 

Wang W, Fan W, Huo M, Zhao H, Lu Y (2018). Hydroxyl radical generation and contaminant removal from water by the collapse of microbubbles under different hydrochemical conditions. Water, Air and Soil Pollution 229:1-11.
Crossref

 

Wen-Qiong W, Yun-Chao W, Xiao-Feng Z, Rui-Xia G, Mao-Lin L (2019). Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chemistry 289:468-481.
Crossref

 

Wilson MF, Jarrige S (2013). Air Bubbles Enhance Membrane Cleaning:A Future Perspective. The International Desalination Association World Congress on Desalination and Water Reuse.

 

Wu C, Wang L, Harbottle D, Masliyah J, Xu, Z (2015). Studying bubble-particle interactions by zeta potential distribution analysis. Journal of Colloid and Interface Science 449:399-408.
Crossref

 

Wu H, Zheng H, Li Y, Ohl C-D, Yu H, Li, D (2021). Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field. Ultrasonics Sonochemistry 78:105735.
Crossref

 

Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig V S J, Hu J (2008). Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. Journal of Colloid and Interface Science 328(1):10-14.
Crossref

 

Xiao W, Xu G (2020). Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties. Science of the Total Environment 703:134976.
Crossref

 

Yiantsios SG, Sioutopoulos D, Karabelas AJ (2005). Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques. Desalination 183(1):257-272.
Crossref

 

Yuan C (2019). Experimental Study on UF-NF Filtration Purification of Pipe Drinking Water.Journal of Physics Conference Series 1176(6):062021. IOP Publishing.
Crossref

 

Zhang H, Sun M, Song L, Guo J, Zhang L (2019). Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge. Biochemical Engineering Journal 147:146-152.
Crossref

 

Zhang M, Qiu L, Liu G (2020). Basic characteristics and application of micro-nano bubbles in water treatment. IOP Conference Series, Earth and Environmental Science 510(4):042050.
Crossref

 

Zhang W, Yu S, Zhao H, Ji X, Ning R (2022). Vacuum membrane distillation for seawater concentrate treatment coupled with microbubble aeration cleaning to alleviate membrane fouling. Separation and Purification Technology 290 p.
Crossref

 

Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK (2022). Micro-nano-bubble technology and its applications in food industry: A critical review. Food Reviews International pp. 1-23.
Crossref

 

Zimmerman WB, Tesa? V, Bandulasena H (2011). Towards energy efficient nanobubble generation with fluidic oscillation. Current Opinion in Colloid and Interface Science 16(4):350-356.
Crossref