African Journal of
Mathematics and Computer Science Research

  • Abbreviation: Afr. J. Math. Comput. Sci. Res.
  • Language: English
  • ISSN: 2006-9731
  • DOI: 10.5897/AJMCSR
  • Start Year: 2008
  • Published Articles: 254

Full Length Research Paper

A study of Green’s functions for three-dimensional problem in thermoelastic diffusion media

Rajnesh Kumar
  • Rajnesh Kumar
  • Department of Mathematics, Kurukshetra University, Kurukshetra-136119, Haryana, India.
  • Google Scholar
Vijay Chawla
  • Vijay Chawla
  • Department of Mathematics, Maharaja Agrasen Mahavidyalya, Jagahdri-135003 Haryana, India.
  • Google Scholar


  •  Received: 29 July 2014
  •  Accepted: 09 September 2014
  •  Published: 06 November 2014

References

Chen WQ, Ding HJ, Ling DS (2004). Thermoelastic field of transversely isotropic elastic medium containing a penny-shaped crack: Exact fundamental solution. Int. J. Solids Struct. 41:69-83.
Crossref
 
Dhaliwal RS, Singh A (1980). Dynamical coupled thermoelasticity; Hindustan Publishers, Delhi.
 
Ding HJ, Chen B, Liang J (1996). General solutions for coupled equations in piezoelectric media. Int. J. Solids Struct. 33:2283-2298.
Crossref
 
Dunn ML, Wienecke HA (1999). Half space green's functions for transversely isotropic piezoelectric solids. J. Appl. Mech. 66:675-679.
Crossref
 
Hou PF, Leung AYT, Chen CP (2008). Green's functions for semi-infinite transversely isotropic thermoelastic materials, ZAMM Z. Angew. Math. Mech. 1:33-41.
Crossref
 
Hou PF, Sha H, Chen CP (2011). 2D general solution and fundamental solution for orthotropic thermoelastic materials, Engng Anal. Bound. Elem. 35:56-60.
Crossref
 
Hou PF, Wang L, Yi T (2009). 2D Green's functions for semi-infinite orthotropic thermoelastic plane. Appl. Math. Model. 33:1674-1682.
Crossref
 
Kumar R, Chawla V (2011). A study of fundamental solution in orthotropic thermodiffusive elastic media, Int. Comm. Heat. Mass trans. 38:456-462.
 
Kumar R, Chawla V (2011). A study of plane wave propagation in anisotropic three-phase-lag and two-phase-lag model. Int. Comm. Heat. Mass trans. 38:1262-1268.
 
Kumar R, Chawla V (2012). Green's functions in orthotropic thermoelastic diffusion media. Eng. Anal. Bound. Elem. 36:1272-1277.
Crossref
 
Kumar R, Chawla V (2013). Reflection and refraction of plane wave at the interface between elastic and thermoelastic media with three-phase-lag. Int. Comm. Heat. Mass trans. 48:53-60.
 
Kumar R, Kansal T (2008). Propagation of lamb waves in transversely isotropic thermoelastic diffusive plate. Int. J. Solid Struct. 45:5890-5913.
Crossref
 
Nowacki W (1974a). Dynamical problem of thermodiffusion in solid – 1, Bull. Pol. Acad. Sci. Ser. IV Technol. Sci. 22:55-64.
 
Nowacki W (1974b). Dynamical problem of thermodiffusion in solid-11, Bull. Pol. Acad. Sci. Ser. IV Technol. Sci. 22:129-135.
 
Nowacki W (1974c). Dynamical problem of thermodiffusion in solid-111, Bull. Pol. Acad. Sci. Ser. IV Technol. Sci. 22:275-276.
 
Nowacki W (1974d). Dynamical problems of thermodiffusion in solids. Proc. Vib. Prob. 15:105-128.
 
Pan E, Tanon F (2000). Three dimensional green's functions in anisotropic piezoelectric solids. Int. J. Solids Struct. 37:943-958.
Crossref
 
Sharma B (1958). Thermal stresses in transversely isotropic semi-infinite elastic solids. ASME J. Appl. Mech. 23:86-88.
 
Sherief HH, Saleh H (2005). A half space problem in the theory of generalized thermoelasticdiffusion. Int. J. Solids Struct. 42:4484-4493.
Crossref
 
Slaughter WS (2002). The linearized theory of elasticity; Birkh¨auser Boston.
Crossref