African Journal of
Pure and Applied Chemistry

  • Abbreviation: Afr. J. Pure Appl. Chem.
  • Language: English
  • ISSN: 1996-0840
  • DOI: 10.5897/AJPAC
  • Start Year: 2007
  • Published Articles: 368

Full Length Research Paper

Fabrication and evaluation of multiple template cross-linked molecularly imprinted electro spun nanofibers for selective extraction of nickel and vanadyl tetraphenylporphyrin from organic media

Kehinde Nurudeen Awokoya
  • Kehinde Nurudeen Awokoya
  • Department of Chemistry, Rhodes University, P.O.Box 94, Grahamstown, 6140, South Africa.
  • Google Scholar
Zenixole Tshentu
  • Zenixole Tshentu
  • Department of Chemistry, Rhodes University, P.O.Box 94, Grahamstown, 6140, South Africa.
  • Google Scholar
Nelson Torto
  • Nelson Torto
  • Department of Chemistry, Rhodes University, P.O.Box 94, Grahamstown, 6140, South Africa.
  • Google Scholar


  •  Received: 03 August 2015
  •  Accepted: 27 October 2015
  •  Published: 31 December 2015

References

Alexander C, Anderson HS, Anderson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitecombe MJ (2006). Molecular imprinting science and technology: A survey of the literature for the years up to and 2003. J. Mol. Recognit. 19:106-180.
Crossref

 

Awokoya KN, Moronkola BA, Chigome S, Ondigo DA, Tshentu Z, Torto N (2013). Molecularly imprinted electrospun nanofibers for adsorption of nickel-5,10,15,20-tetraphenylporphine (NTPP) in organic media. J. Polym. Res. 20:148.
Crossref

 
 

Bhuvanesh G, Nilesh R, Jons H (2007). Poly (lactic acid) fiber: An overview. Progr. Polym. Sci. 32:455-482.
Crossref

 
 

Dechain GP, Gray MR (2010). Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal. Energy Fuels 24:2795-808.
Crossref

 
 

Dickert F, Achatz P, Halikias K. (2001). Double molecular imprinting− A new sensor concept for improving selectivity in the detection of polycyclic aromatic hydrocarbons (PAHs) in water. Fresen. J. Anal. Chem. 371:11-15.
Crossref

 
 

Li CN (2001). Residue processing. Beijing: China Petrochemical Press. pp. 404-405.

 
 

Li KQ, Wang XH (2009). Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: Equilibrium, kinetics and thermodynamics. Bioresour. Technol. 100:2810-2815.
Crossref

 
 

Long FX, Gevert BS (2003). Kinetic parameter estimation and statistical analysis of vanadyl etioporphyrin hydrodemetallization. Comput. Chem. Eng. 27:697-700.
Crossref

 
 

Mohammed FA, Saeed A (2006). A review of methods for the demetallization of residual fuel oils. Fuel Process Technol. 87:573-84.
Crossref

 
 

Mosbach K (2006). The promise of molecular imprinting. Sci. Am. 295:86-91.
Crossref

 
 

Nakamoto Y, Ishimaru T, Endo N, Matsusaki K (2004). Determination of vanadium in heavy oils by atomic absorption spectrometry using a graphite furnace coated with tungsten. Anal. Sci. 20:739-741.
Crossref

 
 

Ramstrom O, Mosbach K (1999). Synthesis and catalysis by molecularly imprinted materials. Curr. Opin. Chem. Biol. 3:759-764.
Crossref

 
 

Reynolds JG (2004).Removal of nickel and vanadium from heavy crude oils by exchange reactions. Prepr. Symp− Am. Chem. Soc. Div. Fuel Chem. 49:79-80.

 
 

Schmidt J, Prignitz R, Peschka D, Münch A, Wagner B, Bänsch E, Peukert W (2012). Conductivity in nonpolar media: Experimental and numerical studies on sodium AOT-hexadecane, lecithin-hexadecane and Al(dips)3-hexadecane systems. J. Coll. Interf. Sci. 386:240-251.
Crossref

 
 

Schweitz L, Anderson LI, Nilsson S (2002). Molecularly imprinted CEC sorbents: Investigation into polymer preparation and electrolyte composition. Analyst 127:22-28.
Crossref

 
 

Shuangcheng W, Jingyi Y, Xinru X (2011). Effect of the cationic starch on removal of Ni and V from crude oils under microwave irradiation. Fuel 90:987-991.
Crossref

 
 

Spegel P, Schweitz L, Nilsson S (2003). Selectivity toward multiple predetermined targets in nanoparticles capillary electrochromatography. Anal. Chem. 75:6608-6613.
Crossref

 
 

Sreenivasan K (2007). Synthesis and evaluation of multiply template molecularly imprinted polyaniline. J. Mater. Sci. 42:7575-7578.
Crossref

 
 

Sreenivasan K, Sivakumar R (1999). Impacting recognition sites in poly (HEMA) for two compounds through molecular imprinting. J. Appl. Polym. Sci. 71:1823-1826.
Crossref

 
 

Suedee R, Srichana T, Chuchome T, Kongmark U (2004). Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracyclin from water. J. Chromatogr. 811:191-200.

 
 

Ware RA, Wei J (1985). Catalytic hydrodemetallation of nickel porphyrin I. Porphyrin structure and reactivity. J. Catal. 93:100-121.
Crossref

 
 

Welter K, Salazar E, Balladores Y, Marquez OP, Marquez J, Martinez Y (2009). Electrochemical removal of metals from crude oil samples. Fuel Process Technol. 90:212-221.
Crossref

 
 

Xu H, Yu DY, Wang ZX (2001). Progress of research on the chemistry of porphyrins compounds in petroleum. Chem. Res. Appl. 13:347-352.

 
 

Yang KG, Liu ZB, Mao M, Zhang XH, Zhao CS (2005). Molecularly imprinted polyether sulfone microspheres for the binding and recognition of bisphenol. Anal. Chim. Acta 546:30-36.
Crossref

 
 

Zhang D (2002). Expedite the development of the hydrogenation craft and technology of our country. Pet. Ref. Eng. 32:1-6.