African Journal of
Pharmacy and Pharmacology

  • Abbreviation: Afr. J. Pharm. Pharmacol.
  • Language: English
  • ISSN: 1996-0816
  • DOI: 10.5897/AJPP
  • Start Year: 2007
  • Published Articles: 2288

Review

Traditional medicinal plants used for the treatment of diabetes in the Sudan: A review

Sakina M. Yagi
  • Sakina M. Yagi
  • Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan.
  • Google Scholar
Ahmed I. Yagi
  • Ahmed I. Yagi
  • Department of Health of Heath Sciences, Khawarizimi International College, United Arab Emirates.
  • Google Scholar


  •  Received: 16 December 2017
  •  Accepted: 18 January 2018
  •  Published: 22 January 2018

References

Abd el-aziz AM, Awad NE, Seida AA, El-khayat Z (2013). Biological and chemical evaluation of the use of Acacia nilotica (L.) in the Egyptian traditional medicine. Int. Bull. Drug. Res. 3:1-19.

 

Abdalrahman AAA, El Tigani S, Yagi S (2016). Biological activity of extracts from Capparis decidua L. twigs. J. Med. Plants Res. 10:1-7.
Crossref

 

Abdel Motaal A, Shaker S, Haddad PS (2012). Antidiabetic activity of standardized extracts of Balanites aegyptiaca fruits using cell-based bioassays. Pharmacogn. J. 4:20-24.
Crossref

 

Abdelhady MIS, Youns M (2014). In-vitro evaluation of the anti-diabetic activity of alcoholic extracts of certain plants belonging to families Meliaceae and Fabaceae. Nat. Prod. Indian J. 10:99-101.

 

Abou Khalil NS, Abou-Elhamd AS, Wasfy SIA, El Mileegy IMH, Hamed MY, Ageely HM (2016). Antidiabetic and antioxidant impacts of desert date (Balanites aegyptiaca) and parsley (Petroselinum sativum) aqueous extracts: lessons from experimental rats. J. Diabetes Res. Article ID 8408326, 10p.
Crossref

 

Abubakar G, Danladi AA, Sunday EA, San I (2009). Antidiabetic effect of Nauclea latifolia leaf ethanolic extract in streptozotocin-induced diabetic rats. Pharmacogn. Res. 1:392-395.

 

Adam SIY, Abd Alhameed MI (2013). Kigelia africana fruits' extracts antihepato-toxic effects on male Wistar rats liver destruction induced by CCL4. Asian J. Med. Sci. 5:26-32.

 

Afaf I, Abuelgasim A, Fatih Elruhman O, Galal M (2007). Toxicological effects of Ambrosia maritime L. (Compositae) extracts in rats. Vet. Res.1:71-75.

 

Agarwal V, Chavan BM (1988). A study on composition and hypolipidaemic effect of dietary fibre from some plant foods. Plant Foods Hum. Nutr. 38:189-197.
Crossref

 

Agarwal V, Sharma AK, Upadhyay A, Singh G, Gupta R (2012). Hypoglycemic effects of Citrullus colocynthis roots. Acta Pol. Pharm. Drug Res. 69: 75.

 

Aguh BI, Nock IH, Ndams IS, Agunu A, Ukwubile CA (2013). Hypoglycaemic activity and nephro-protectective effect of Bauhinia rufescens in alloxan-induced diabetic rats. IJAPBC. 2: 249-255.

 

Agyare C, Dwobeng AS, Agyepong N, Boakye YD, Mensah KB, Ayande PG, Adarkwa-Yiadom M (2013). Antimicrobial, antioxidant, and wound healing properties of Kigelia africana (Lam.) Beneth. and Strophanthus hispidus DC. Adv. Pharmacol. Sci. ID 692613 10p.

 

Ahmad M, Zaman F, Sharif T, Ch MZ (2008). Antidiabetic and hypolipidemic effects of aqueous methanolic extract of Acacia nilotica pods in alloxan-induced diabetic rabbits. Scand. J. Lab. Anim. Sci. 35:29-34.

 

Akanni OO, Owumi SE, Adaramoye OA (2014). In vitro studies to assess the antioxidative, radical scavenging and arginase inhibitory potentials of extracts from Artocarpus altilis, Ficus exasperate and Kigelia africana. Asian Pac. J. Trop. Biomed. 4:492-499.
Crossref

 

Akanya HO, Isa UL, Adeyemi HR, Ossamulu IF (2015). Effect of Sesamum indicum (Linn) seeds supplemented diets on blood glucose, lipid profiles and serum levels of enzymes in alloxan induced diabetic rats. J. Appl. Life Sci. Int. 2:134-144.
Crossref

 

Akash MSH, Rehman K, Chen S (2014). Spice plant Allium cepa: Dietary supplement for treatment of type 2diabetes mellitus. Nutrition 30:1128-1137.
Crossref

 

Alamin MA, Yagi AI, Yagi SM (2015). Evaluation of antidiabetic activity of plants used in Western Sudan. Asian Pac. J. Trop. Biomed. 5:395-402.
Crossref

 

Ammar NM, Al Okbi SY, Badawy IH (1993). Hypoglycemic effect of different extracts of Ambrosia maritima L. Compositae. J. Islamic Acad. Sci. 6:298-301.

 

Amutha K, Godavari A (2016). In-vitro antidiabetic activity of n-butanol extract of Sesamum indicum. Asian J. Pharm. Clin. Res. 9:60-62.

 

Anitha T, Balakumar C, Ilango KB, Benedict Jose C, Vetrivel D (2014). Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats. Int. J. Adv. Pharm. Biol. Chem. 3:487-494.

 

Atawodi SE, Atawodi JC, PalaY, Idakwo P (2009). Assessment of polyphenol profile and antioxidant properties of leaves, stem and root barks of Khaya senegalensis A Juss. Electronic J. Biol. 5:80-84.

 

Atolani O, Adeyemi SO, Akpan E, Adeosun CB, Olatunji GA (2011). Chemical composition and antioxidant potentials of Kigelia pinnata root oil and extracts. EXCLI J. 10:264-273.

 

Auwal MS, Tijjani AN, Lawan FA, Mairiga IA, Ibrahim A, Njobdi AB, Shuaibu A, Sanda KA, Wakil AM, Thaluvwa AB (2012). The quantitative phytochemistry and hypoglycemic properties of crude mesocarp extract of Hyphaene thebaica (doumpalm) on normoglycemic wistar albino rats. J. Med. Sci. 12:280-285.
Crossref

 

Auwal S, Saka S, Shuaibu A, Mairiga IA, Sanda KA, Ibrshim A, Lawan FA, Thaluvwa AB, Njobdi AB (2013). Phytochemical properties and hypoglycemic acticity of the aqueous and fractionated portions of Acacia nilotica (Fabaceae) pod extracts on blood glucose level in normoglycemic Wistar albino rats. J. Med. Sci. 13:111-117.
Crossref

 

Badole SL, Ghule AE, Wagh NK (2013). Antidiabetic Activity of Allium Sativum. In Bioactive Food as Dietary Interventions for Diabetes. pp. 157-161.
Crossref

 

Bamosa AO (2010). Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J. Physiol. Pharmacol. 54:344-354.

 

Bamosa AO (2015). A review on the hypoglycemic effect of Nigella sativa and thymoquinone. Saudi J. Med. Med. Sci. 3:2-7.
Crossref

 

Barapatre A, Aadil KR, Tiwary BN, Jha H (2015). In vitro antioxidant and antidiabetic activities of biomodified ligninfrom Acacia nilotica wood. Int. J. Biol. Macromolec. 75:81-89.
Crossref

 

Batra S, Batra N, Nagori BP (2013). Preliminary phytochemical studies and evaluation of antidiabetic activity of stem bark of Acacia senegal (L.) Willd. in alloxan induced diabetic albino rats. Int. J. Med. Res. Rev. 1: 611-616.

 

Beji SR, Jameleddine S, Ksour R (2016). Assessment of the antidiabetic, antihyperlipidemic and antioxidant properties of Trigonella foenum-graecum Linnaeus, 1753 (Fenugreek) in alloxan-induced diabetic rats. J. New Sci. Agric. Biotechnol. 28(7):1602-1609.

 

Benhaddou-Andaloussi A, Martineau L, Vuong T, Meddah B, Madiraju P, Settaf A, Haddad PS (2011). The in vivo antidiabetic activity of Nigella sativa is mediated through activation of the AMPK pathway and increased muscle Glut4 content. Evid. Based Complement. Alternat. Med. Article ID 538671.

 

Bhardwaj N, Gauttam V, Kalia AN (2010). Evaluation of antidiabetic activity of Momordica balsamina Linn seeds in experimentally-induced diabetes. J. Chem. Pharm. Res. 2:701-707.

 

Bhuvaneswari P, Krishnakumari S (2012). Antihyperglycemic potential of Sesamum indicum (linn) seeds in streptozotocin induced diabetic rats. Int. J. Pharm. Pharm. Sci. 4:527-531.

 

Breu W, Dorsch W (1994). Allium cepa L. (Onion): Chemistry, analysis and pharmacology. In: Wagner H, Farnsworth N, eds. Econ. Med. Plants Res. 6:116-116.

 

Deferme S, Kamuhabwa A, Nshimo C, deWitte P, Augustijns P (2003). Screening of Tanzanian plant extracts for their potential inhibitory effect on P-glycoprote inmediatede flux. Phytother. Res. 17:459-464.
Crossref

 

Dehghani F, Shahin MRP (2006). The toxic effect of alcoholic extract of Citrullus colocynthis on rat liver. Iranian J. Pharmacol. Ther. 5:117-119.

 

Dhriti V, Chowdary PV, Rahul J, Vishank G, Shivaji BB (2014). Free radical scavenging and anti-diabetic activity of kigelia pinnata. World J. Pharm. Pharm. Sci. 3:1249-1262.

 

Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B (2012). Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J. Nat. Med. 66(4):671-679.
Crossref

 

Effiong GS, Essien GE, Ekpo AV (2014). Comparison of the antiglycemic and hypolipidaemic effects of n-hexane and methanol leaf extracts of Nauclea latifolia in alloxan-induced diabetic rats. Int. Res. J. Basic Clin. Stud. 2:82-86.

 

El Rabey HA, Al-Seeni MN, Bakhashwain AS (2017). The Antidiabetic Activity of Nigella sativa and Propolis on Streptozotocin-Induced Diabetes and Diabetic Nephropathy in Male Rats. Evid. Based Complement. Alternat. Med., Article ID 5439645, 14p.

 

Elamin A, Omer MIA, Hofvander Y, Tuvemo T (1989). Prevalence of insulin dependent diabetes mellitus (IDDM) in school children in Khartoum, Sudan. Diabetes Care. 12(6):430-432.
Crossref

 

El-Desoky GE, Aboul-Soud MAM, Al-Numair KS (2012). Antidiabetic and hypolipidemic effects of Ceylon cinnamon (Cinnamomum verum) in alloxan-diabetic rats. J. Med. Plants Res. 6(9):1685-1691.

 

El-Ghazali GB, El Tohami MS, El Egami AB, Abdalla WS, Mohammed MG (1997). Medicinal plants of the Sudan: Part 4. Medicinal plants of Northern Kordofan. Medicinal and Aromatic Plants Research Institute. National Center for Research, Khartoum.

 

EL-Kamali HH, EL-amir MY (2010). Antibacterial activity and phytochemical screening of ethanolic extracts obtained from selected Sudanese medicinal plants. Curr. Res. J. Biol. Sci. 2:143-146.

 

El-Saadany SS, Abdel-Rahim EA, Wasif MM (1986). Biochemical action of Balanites aegyptiaca fruits as a possible hypoglycemic agent. Food Chem. 19: 307-315.
Crossref

 

El-Shora HM, El-Amier YA, Awad MH (2016). Antioxidant activity of leaf extracts from Zygophyllum coccineum L. collected from desert and coastal habitats of Egypt. Int. J. Curr. Microbiol. App. Sci. 5:635-641.
Crossref

 

Ezuruike UF, Prieto JM (2014). The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. J. Ethnopharmacol. 155:857-924.
Crossref

 

Farag MA, Porzel A, Wessjohann LA (2015). Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR. J. Pharm. Biomed. Anal. 115:383-387.
Crossref

 

Festing S, Wilkinson R (2007). The ethics of animal research. EMBO Reports. 8:526-530.
Crossref

 

François MG, Tehoua L, Ouattara H, Yapi A (2014). Comparative of the antihyperglycemic activity of Sclerocarya birrea, Khaya senegalensis, Heliotropium indicum and Ocimum gratissimum to rats wistar. Am. J. Biosci. 2:60-63.

 

Fröde TS, Medeiros YS (2008). Animal models to test drugs with potential antidiabetic activity. J. Ethnopharmacol. 115:173-183.
Crossref

 

Gaber KE, Singhal U, Daowd O (2013). Hypoglycemic and hypolipidaemic effects of some common plants extract in Type 2 diabetic patients at Eldabba area (North Sudan). IOSR J. Pharm. Biol. Sci. 8:38-43.
Crossref

 

Gidado A, Ameh DA, Atawodi SE (2005). Effect of Nauclea latifolia leaves aqueous extracts on blood glucose levels of normal and alloxan-induced diabetic rats. Afr. J. Biotechnol. 4:91-93.

 

Gidado A, Ameh DA, Atawodi SE, Ibrahim S (2008). Hypoglycaemic Activity of Nauclea Latifolia Sm. (Rubiaceae) in Experimental Animals. Afr. J. Tradit. Complement Altern. Med. 5: 201-208.
Crossref

 

Greenblatt DJ, Leigh-Pemberton RA, von Moltke LL (2006). In vitro interactions of water-soluble garlic components with human cytochromes P450. ‎J. Nutr. 136:806-809.
Crossref

 

Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A (2016). Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs - A mechanistic revisit to understand their mode of action. Pharmacol. Res. 113:636-667.
Crossref

 

Gutch M, Razi SM, Kumar S, Gupta KK (2014). Diabetes mellitus: trends innorthern India. Indian. J. Endocrinol. Metab. 18:731-734.

 

Hafizur RM, Babiker R, Yagi S, Chishti S, Kabir N, Choudhary MI (2012). The antidiabetic effect of Geigeria alata is mediated by enhanced insulin secretion, modulation of β-cell function, and improvement of antioxidant activity in streptozotocin-induced diabetic rats. J. Endocrinol. 214:329-335.
Crossref

 

Helal EGE, Abou-Aouf N, Khattab SM, Meselhy AERA, Abu-Amara TMM (2014). The Effects of Ambrosia maritime L. (Damsissa) on some biochemical and histological parameters of diabetic albino rats. Egyptian J. Hosp. Med. 57:612-629.
Crossref

 

Hilmi Y, Abushama MF, Abdalgadir H, Khalid A, Khalid H (2014). A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional Sudanese plants with anti-diabetic potential. BMC Complement. Altern. Med. 14:149.
Crossref

 

Houacine C, Elkhawad AO, Ayoub SMH (2012). A comparative study on the anti-diabetic activity of extracts of some Algerian and Sudanese plants. J. Diabetes Endocrinol. 3:25-28.

 

Ibrahim MA, Islam MdS (2014). Butanol fraction of Khaya senegalensis root modulates β-cell function and ameliorates diabetes-related biochemical parameters in a type 2 diabetes rat model. J. Ethnopharmacol. 154:832-838.
Crossref

 

Ikram F; Hussain F (2014). Antidiabetic efficacy of Nigella sativa Linn. in alloxan-induced diabetic rabbits. Int. Med. J. Malaysia 13(1).

 

IM K, Issac A, NMJ, Ninan E, Maliakel B, Kuttan R (2014). Effects of the polyphenol content on the anti-diabetic activity of Cinnamomum zeylanicum extracts. Food Funct. 5(9):2208-2220.
Crossref

 

Jayaraman R, Shivakumar A, Anitha T, Joshi VD, Palei NN (2009). Antidiabetic effect of petroleum ether. extract of Citrullus colocynthis fruits against streptozotocin-induced hyperglycemic rats. Rom. J. Biol. Plant Biol. 4:127-34.

 

Jebasingh D, Venkataraman S, Jackson DD, Emerald BS (2012). Physiochemical and toxicological studies of the medicinal plant Cyperus rotundus L (Cyperaceae). Int. J. Appl. Res. Nat. Prod. 5:1-8.

 

Jouad H, Maghrani M, Eddouks M (2002). Hypoglycemic effect of aqueous extract of Ammi visnaga in normal and streptozotocin-induced diabetic rats. J. Herb. Pharmacother. 2(4):19-29.
Crossref

Kadan S, Saad B, Sasson Y, Zaid H (2013). In vitro evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 translocation. Evid. Based Complement. Altern. Med. pp. 1-9.

 

Kamel MS1, Ohtani K, Kurokawa T, Assaf MH, el-Shanawany MA, Ali AA, Kasai R, Ishibashi S, Tanaka O (1991). Studies on Balanites aegyptiaca fruits, an antidiabetic Egyptian folk medicine. Chem. Pharm. Bull. (Tokyo). 39(5):1229-1233.
Crossref

 
 

Khan MF, Dixit P, Jaiswal N, Tamrakar AK, Srivastava AK, Maurya R (2012). Chemical constituents of Kigelia pinnata twigs and their GLUT4 translocation modulatory effect in skeletal muscle cells. Fitoterapia 83:125-129.
Crossref

 
 

Khlifi S, Ben Jemaa H, Ben Hmad H, Abaza H, Karmous I, Abid A, Benzarti A, Elati J, Aouidet A (2016). Antioxidant, antidiabetic and antihyperlipidemic effects of Trigonella foenum-graecum seeds. Int. J. Pharmacol. 12:394-400.
Crossref

 
 

Kiendrebeogo M, Dijoux-Franca M, Lamien CE, Meda A, Wouessidjewe D, Nacoulma OG (2005). Acute toxicity and antioxydant property of Striga hermonthica (Del.) Benth (Scrophulariaceae). Afr. J. Biotechnol. 4:919-922.

 
 

Kumar S, Kumar V, Prakash OM (2012). Antidiabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin induced diabetic rats. Asian Pac. J. Trop. Biomed. 2:543-546.
Crossref

 
 

Mali RG, Mahale NB (2008). Evaluation of Rhynchosia minima (Linn.) DC leaves for anthelmintic activity. Int. J. Pharm. Sci. Nanotechnol. 1(2):191-194.

 
 

Mansour HA, Newairy AA, Yousef MI, Sheweita SA (2002). Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology 170(3):221-228.
Crossref

 
 

Mariod AA, Abdelwahab SI (2012). Sclerocarya birrea (Marula), An African tree of nutritional and medicinal uses: A review. Food Rev. Int. 28:375-388.
Crossref

 
 

Mariod AA, Abdelwahab SI, Elkheir S, Ahmed JM, Fauzi PNM, Chuen ChS (2012). Antioxidant activity of different parts from Annona squamosa, and Catunaregam nilotica methanolic extract. Acta. Sci. Pol. Technol. Aliment. 11: 249-257.

 
 

Markowitz JS, DeVane CL, Chavin KD, Taylor RM, Ruan Y, Donovan JL (2003). Effects of garlic (Allium sativum L.) supplementation on cytochrome P450 2D6 and 3A4 activity in healthy volunteers. Clin. Pharmacol. Ther. 74(2):170-177.
Crossref

 
 

Marles RJ, Farnsworth NR (1995). Antidiabetic plants and their active constituents. Phytomedicine 2:137-189.
Crossref

 
 

Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, and Sarahroodi S (2013). Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J. Basic. Med. Sci. 16:1031-1048.

 
 

Mogale MA, Lebelo SL, Thovhogi N, de Freitas AN, Shai LJ (2011). α-Amylase and α-glucosidase inhibitory effects of Sclerocarya birrea (A. Rich.) Hochst. subspecies caffra (Sond) Kokwaro (Anacardiaceae) stem-bark extracts. Afr. J. Biotechnol. 10:15033-15039.
Crossref

 
 

Moller DE (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 414:821-827.
Crossref

 
 

Motala AA, Omar MA, Pirie FJ (2003). Diabetes in Africa. Epidemiology of type 1 and type 2 diabetes in Africa. J. Cardiovasc. Risk. 10(2):77-83.
Crossref

 
 

Mousinho NMH, van Tonder JJ, Steenkamp V (2013). In vitro anti-diabetic activity of Sclerocarya birrea and Ziziphus mucronata. Nat. Prod. Commun. 8:1279-84.

 
 

Muhammad A, Sira HM (2013). Antimicrobial, antityrosinase and brine shrimp lethality test of Bauhinia rufescens Lam (Fabaceae). J. Coast Life Med. 1(2):135-140.

 
 

Musa MS, Abdelrasoo FE, Elsheikh EA, Ahmed LAMN, Mahmoud AE, Yagi SM (2011). Ethnobotanical study of medicinal plants in the Blue Nile State, south-eastern Sudan. J. Med. Plants Res. 5: 4287-4297.

 
 

Mustafa AH, Eltayeb BI, Ali MA, Shaddad AS, Mohammad HA (2013). Antidiabetic and hypolipidaemic effects of Cicer arientinum seedsextracts in hyperglycemic and diabetic rats. J. Pharm. Biomed. Sci. 30:1046-1052.

 
 

Mustafa HA, Eltaeb IB, Ali MA, Shadad SA (2010). Antidiabetic and hypolipidaemic effects of Cinnanomum verum bark on hyperglycaemic and diabetic rats. Res. J. Pharmacol. 4:21-25.
Crossref

 
 

Nakhaee A, Bokaeian M, Saravani M, Farhangi A, Akbar-zadeh A (2009). Attenuation of oxidative stress in streptozotocin-induced diabetic rats by Eucalyptus globulus. Indian J. Clin. Biochem. 24(4):419-425.
Crossref

 
 

Ojewole JAO (2003). Hypoglycemic effect of Sclerocarya birrea (A. Rich.) Hochst. (Anacardiaceae) stem-bark aqueous extract in rats. Phytomedicine 10:675-681.
Crossref

 
 

Okoro SO, Kawo AH, Arzai AH (2012). Phytochemical screening, antibacterial and toxicological activities of Acacia senegal extracts. Bayero J. Pure Appl. Sci. 5(1):163-170.
Crossref

 
 

Oluwakanyinsola SA, Adeniyi TY, Akingbasote JA, Florence OE (2010). Acute and subacute toxicity study of ethanolic extract of the stem bark of Faidherbia albida (DEL) A. chev (Mimosoidae) in rats. Afr. J. Biotechnol. 9:1218-1224.
Crossref

 
 

Oryan A, Hashemnia M, Hamidi A, Mohammadalipour A (2014). Effects of hydro-ethanol extract of Citrullus colocynthis on blood glucose levels and pathology of organs in alloxan-induced diabetic rats. Asian Pac. J. Trop. Dis. 4(2):125-130.
Crossref

 
 

Ozougwu J, Eyo J (2010). Studies on the anti-diabetic activity of Allium sativum (garlic) aqueous extracts on alloxan-induced diabetic albino rat. Pharmacologyonline 2:1079-1088.

 
 

Pal R, Hooda MS, Bias CS, Singh J (2014). Hepatoprotective activity of Acacia senegal pod against carbon tetrachloride-induced hepatotoxicity in rats. Int. J. Pharm. Sci. 26:165-168.

 
 

Patra A, Jha S (2009). Antidiabetic effect of the aqueous extract of E. citriodora in alloxan induced diabetic rats. Pharmacog. Mag. 5:51-54.

 
 

Priya B, Gahlot M, Joshi P (2014). Screening of anti-hyperglycemic activity of Kigelia africana on alloxan-induced diabetic rats. Indian J. Appl. Res. 4:448-451.
Crossref

 
 

Rahma EH, Narasinga RMS (1984). Effect of debittering treatment on the composition and protein components of lupin seeds (Lupinus termis). J. Agric. Food Chem. 32(5):1026-1030.
Crossref

 
 

Rotenstein LS, Kozak BM, Shivers JP, Yarchoan M, Close J, Close KL (2012). The ideal diabetes therapy: what will it look like? How close are we?. Clin. Diabetes 30:44-53.
Crossref

 
 

Salib JY, Michael HN, Eskande EF (2013). Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats. Pharmacogn. Res. 5:22-29.
Crossref

 
 

Sathiavelu A, Sangeetha S, Archit R, Mythili S (2013). In vitro anti-diabetic activity of aqueous extract of the medicinal plants Nigella sativa, Eugenia jambolana, Andrographis paniculata and Gymnema sylvestre. Int. J. Drug Dev. Res. 5(2):323-328.

 
 

Sewani-Rusike CR, Jumbam DN, Chinhoyi LR, Nkeh-Chungag BN (2015). Investigation of hypogycemic and hypolipidemic effects of an aqueous extract of Lupinus albus legume seed in streptozotocin induced type I diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 12:36-42.
Crossref

 
 

Sharma RD, Sarkar A, Hazar DK, Misra B, Singh JB, Maheshwari BB (1996). Toxicological evaluation of fenugreek seeds: a long term feeding experiment in diabetic patients. Phytother. Res. 10: 519-520.
Crossref

 
 

Shaw D, Graeme L, Pierre D, Elizabeth W, Kelvin C (2012). Pharmacovigilance of herbal medicine. J. Ethnopharmacol. 140:513-518.
Crossref

 
 

Shaw JE, Sicree RA, Zimmet PZ (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes. Res. Clin. Pract. 87:4-14.
Crossref

 
 

Sheehan MT (2003). Current therapeutic options in type 2 diabetes mellitus: a practical approach. J. Clin. Med. Res. 1:189-200.
Crossref

 
 

Sheweita SA, Newairy AA, Mansour HA, Yousef MI (2002). Effect of some hypoglycemic herbs on the activity of phase I and II drug-metabolizing enzymes in alloxan-induced diabetic rats. Toxicology 174(2):131-139.
Crossref

 
 

Sikder MAA, Hossian AN, Parvez MM, Kaisar MA, Nimmi I, Rashid MA (2011). Antioxidant behavior of two Bangladeshi medicinal plants: Kigelia pinnata and Mesua nagassarium. Bangladesh Pharm. J. 14:27-30.

 
 

Simeonova R, Burdina MK, Dimitrova DZ, Gevrenova R, Balabanova V, Vitcheva V, Tzankova V, Kasabova A (2016). Antidiabetic, antioxidant and antihypertensive effects of 3,5-dicaffeoylquinic acid from Geigeria alata (Dc) Oliv. & Hiern. on streptozotocin-induced diabetic normotensive and hypertensive rats.Toxicol. Lett. 258:S293.
Crossref

 
 

Singh P, Khosa RL, Mishra G, Jha KK (2015). Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice. J. Pharm. Bioallied. Sci. 7:289-292.
Crossref

 
 

Sylvester EG, Dan AH (2015). The effect of Nauclea latifolia leaf extract on some biochemical parameters in streptozotocin diabetic rat models. J. Med. Med. Sci. 6:47-52.

 
 

Taj Eldin IM, Ahmed EM, Mohamedm AH (2009). Clinical hypoglycemic effects of Allium cepa (red onion) in type 1 diabetic patients. Sudan J. Med. Sci. 4:153-157.

 
 

Takeuchi H, Mooi LY, Inagaki Y, He P (2001). Hypoglycemic effect of a hot-water extract from defatted sesame (Sesamum indicum L.) seed on the blood glucose level in genetically diabetic KK-Ay mice. Biosci. Biotechnol. Biochem. 65:2318-2321.
Crossref

 
 

Tanko Y, Muhammad A, Elaigwu J, Mohammed KA, Jimoh A, Sada NM, Dallatu, Yerima M, Mohammed A (2013). Anti-diabetic effects of ethyl acetate and n-butanol fractions of Acacia nilotica leaves methanolic extract on alloxan-induced diabetic Wistar rats. J. Appl. Pharm. Sci. 3:089-093.

 
 

Thompson PL, Davis TME (2017). Cardiovascular effects of glucose-lowering therapies for type 2 diabetes: New drugs in perspective. Clin. Ther. 39(5):1012-1025.
Crossref

 
 

Thomson M, Al-Amin ZM, Al-Qattan KK, Shaban LH, Ali M (2007). Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int. J. Diabetes & Metabolism 15: 108-115.

 
 

Thomson M, Al-Qattan KK, Divya JS and Ali M (2016). Anti-diabetic and anti-oxidant potential of aged garlic extract (AGE) in streptozotocin-induced diabetic rats. BMC Complement. Alternat. Med. 16:17.
Crossref

 
 

Traore F, Gasquet M, Laget M, Guiraud H, Di Giorgio C, Azas N, Doumbo O, Timon-David P (2000). Toxicity and genotoxicity of antimalarial alkaloid rich extracts derived from Mitragyna inermis O. Kuntze and Nauclea latifolia. Phytother. Res. 14:608-611.
Crossref

 
 

Udayasekhara RP, Sesikeran B, Srinivasa RP (1996). Short term nutritional and safety evaluation of fenugreek. Nutr. Res. 16:1495-1505.
Crossref

 
 

Umar IA, Mohammad A, Ndidi US, Abdulazeez AB, Olica WC, Adam M (2014). Antihyperglycemic and antihyperlipidemic effect of aqueous stem bark extract of Acacia albida Delile in alloxan-induced diabetic rats. Asian J. Biochem. 9:170-178.
Crossref

 
 

Vadnere GP, Patil AV, Wagh SS, Jain SK (2012). In vitro free radical scavenging and antioxidant activity of Cicer arietinum L. (Fabaceae). Int. J. Pharm Tech. Res. 4(1):343-350.

 
 

van de Venter M, Roux S, Bungu LC, Louw J, Crouch NR, Grace OM, Maharaj V, Pillay P, Sewnarian P, Bhagwandin N, Folb P (2008). Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. J. Ethnopharmacol. 119:81-86.
Crossref

 
 

Wichitsranoi J, Weerapreeyakul N, Boonsiri P, Settasatian C, Settasatian N, Komanasin N, Sirijaichingkul S, Teerajetgul Y, Rangkadilok N, Leelayuwat N (2011). Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans. Nutr. J. 10:82.
Crossref

 
 

Yadav BV, Deshmukh TA, Badole SL, Kadam HM, Bodhankar SL, Dhaneshwar SR (2009). Antihyperglycemic activity of Cicer arietinum seeds. Pharmacologyonline 3:748-757.

 
 

Yadav P, Sarkar S, Bhatnagar D (1997). Action of Capparis deciduas against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol. Res. 36:221-228.
Crossref

 
 

Yagi S, Abd Rahman AE, ELhassan GOM, Mohammed AMA (2013). Elemental analysis of ten Sudanese medicinal plants using X -ray fluorescence. J. Appl. Ind. Sci. 1:49-52.

 
 

Yagi SM, El Tigani S, Adam SEI (1998). Toxicity of Senna obtusifolia fresh and fermented leaves (Kawal), Senna alata leaves and some products from Senna alata on rats. Phytother. Res. 12:324-330.
Crossref

 
 

Yang CH, Li RX, Chuang LY (2012). Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules, 17(6):7294-7304.
Crossref

 
 

Zaid H, Rayan A, Said O, Saad B (2010). Cancer treatment by Greco-Arab and Islamic herbal medicine. Open Nutraceuticals J. 3:203-212.
Crossref

 
 

Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, de Feo V (2011). Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int. J. Mol. Sci. 12:8846-8861.
Crossref