African Journal of
Plant Science

  • Abbreviation: Afr. J. Plant Sci.
  • Language: English
  • ISSN: 1996-0824
  • DOI: 10.5897/AJPS
  • Start Year: 2007
  • Published Articles: 807

Full Length Research Paper

Effect of native mycorrhizal fungi inoculants on the growth and phosphorus uptake of tree legumes: Erythryna brucei and Millettia ferruginea

Beyene Dobo
  • Beyene Dobo
  • School of Natural Resources Management and Environmental Sciences, Haramaya University, P. O. Box 138, Dire Dawa, Ethiopia.
  • Google Scholar


  •  Received: 07 November 2016
  •  Accepted: 02 February 2017
  •  Published: 31 October 2018

References

Azcon R, Amebrosano E, Charest C (2003). Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Science 165:1137-1145.
Crossref

 

Baird JM, Walley FL, Shirtliffe SJ (2010). Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Mycorrhiza 20:541-549.
Crossref

 
 

Baon JB, Smith SE, Alston AM, Wheeler RD (1992). Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Australian Journal of Agricultural Research 43:479-491.
Crossref

 
 

Cardoso IM, Boddington CL, Janssen BH, Oenema O, Kuyper TW (2006). Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maizeCommunications in Soil Science and Plant Analysis 37:1537-1551.

 
 

Cardoso IM, Kuyper, TW (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment 116:72-84.
Crossref

 
 

Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005). Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell & Environment 28:642-650.
Crossref

 
 

Covacevich F, Echeverría HE, Aguirrezabal LAN (2007). Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Applied Soil Ecology 35:1-9.
Crossref

 
 

de Miranda JCC, Harris PJ (1994). Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytologist 128:103-108.
Crossref

 
 

de Miranda JCC, Harris PJ, Wild A (1989). Effects of soil and plant phosphorus concentrations on vesicular-arbuscular mycorrhizae in sorghum plants. New Phytologist 112:405-410.
Crossref

 
 

Fitter AH (1988). Water relations of red clover Trifolium pratence L. as affected by VA mycorrhizal colonization of phosphorus supply before and during drought. Journal of Experimental Botany 39:595-603.
Crossref

 
 

Foley JA, De Fries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005). Global consequences of land use. Science 309:570-574.
Crossref

 
 

Gerdemann JW, Nicolson TH (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46:235-244.
Crossref

 
 

Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519-530.
Crossref

 
 

Giovannetti M, Mosse B (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84:489-500.
Crossref

 
 

Habte M, Manjunath A (1991). Categories of vesiculararbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3-12.
Crossref

 
 

Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173-195.
Crossref

 
 

Ingleby K, Wilson EJ, Munro ERC, Cavers S (2007). Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant Soil 294:125-136.
Crossref

 
 

INVAM-International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi (2006). 

 
 

Jackson ML (1973). Soil chemical analysis. Prentice Hall of India, New Delhi.

 
 

Jakobsen I, Chen BD, Munkvold L, Lundsgaard T, Zhu YG (2005). Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant, Cell & Environment 28:928-938.
Crossref

 
 

Kahiluoto H, Ketoja E, Vestnerg M (2000). Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization. 1. Bioassays in a growth chamber. Plant Soil 227:191-206.
Crossref

 
 

Koide RT (1991). Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist 117:365–386.
Crossref

 
 

Landis FC, Fraser LH (2008). A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytologist 177:466-479.

 
 

Legesse N (1995). Indigenous trees of Ethiopia: Biology, Uses and Propagation techniques. Printed by the SLU Reprocentralen, Umea, Sweden, p. 285.

 
 

Legesse N (2002). Review of Research Advances in some African Trees with special reference to Ethiopia. Ethiopian Journal of Biological Sciences 1(1):81-126.

 
 

Ma Q, Rengel Z (2008). Phosphorus acquisition and wheat growth are influenced by shoot phosphorus status and soil phosphorus distribution in a split-root system. Journal of Plant Nutrition and Soil Science 171:266-271.
Crossref

 
 

Muleta D, Assefa F, Nemomissa S, Granhall U (2008). Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils 44:653-659.
Crossref

 
 

Muthukumar T, Udaiyan K (2006). Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two tropical soil types with and without fertilizer application. New Forests 31:469-485.
Crossref

 
 

Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005). Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems 71:43-54.
Crossref

 
 

Nielsen JD (1983). Influence of vesicular-arbuscular mycorrhiza fungi on growth and uptake of varius nutrients as well as uptake ratio of fertilizer P for lucerne (Medicago sativa). Plant Soil 70:165-172.
Crossref

 
 

Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mader P, Roth HR, Frossard E (2002). Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutrient Cycling in Agroecosystems 62:25-35.
Crossref

 
 

Pande M, Tarafdar JC (2004). Arbuscular mycorrhizal fungal diversity in neem based agroforestry systems in Rajasthan. Applied Soil Ecology 26:233-241.
Crossref

 
 

Pearson VG, Gianinazzi S (1983). The Physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197-209.
Crossref

 
 

Phillips JM, Hayman DS (1970). Improved procedure for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158-161.
Crossref

 
 

Plenchette C, Fortin JA, Furlan V (1983). Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199-209.
Crossref

 
 

Ravnskov S, Jakobsen I (1995). Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytologist 129:611-618.
Crossref

 
 

SAS Institute Inc. (1982). SAS User's Guide: Statistics. SAS Institute, Inc., Cary, NC.

 
 

Schroeder MS, Janos DP (2005). Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization and intraspecific density. Mycorrhiza 15:203-216.
Crossref

 
 

Shukla A, Kumar A, Jha A, Chaturvedi OP, Prasad R, Gupta A (2009). Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in Central India. Agroforestry Systems 76:95-109.
Crossref

 
 

Tadesse H, Legesse N, Olsson M (2000). Millettia ferruginea from Southern Ethiopia: Impacts on soil fertility and growth of maize. Agroforestry Systems 48:9-24.
Crossref

 
 

Theuerl S, Buscot F (2010). Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biology and Fertility of Soils 46:215-226.
Crossref

 
 

Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998). Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37-46.
Crossref

 
 

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002). Agricultural sustainability and intensive production practices. Nature 418:671-677.
Crossref

 
 

van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller, T, Wiemken A, Sanders IR (2006). The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172:739-752.
Crossref

 
 

Wang FY, Liu RJ, Lin XG (2009). Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the yellow river delta. Mycorrhiza 14:133-137.

 
 

Wrage N, Lardy LC, Isselstein J (2010). Phosphorus, plant biodiversity and climate change. In. Lichtfouse E (ed) Sustainable agriculture reviews, vol 3, Sociology, organic farming, climate change and soil science. Springer Science Business Media pp. 147-169.
Crossref

 
 

Yadav K, Aggarwal A, Singh N (2013a). Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Industrial Crops and Products 45:88-93.
Crossref