African Journal of
Plant Science

  • Abbreviation: Afr. J. Plant Sci.
  • Language: English
  • ISSN: 1996-0824
  • DOI: 10.5897/AJPS
  • Start Year: 2007
  • Published Articles: 807

Full Length Research Paper

Study of root traits of chickpea (Cicer arietinum L.) under drought stress

Muriuki R.
  • Muriuki R.
  • Department of Crops, Horticulture and Soils, Egerton University, P. O. Box 536-20115 Egerton, Kenya.
  • Google Scholar
Paul K. Kimurto
  • Paul K. Kimurto
  • Department of Crops, Horticulture and Soils, Egerton University, P. O. Box 536-20115 Egerton, Kenya.
  • Google Scholar
Towett B. K.
  • Towett B. K.
  • Department of Crops, Horticulture and Soils, Egerton University, P. O. Box 536-20115 Egerton, Kenya.
  • Google Scholar
Vadez V.
  • Vadez V.
  • International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru 502324 Telangana, India.
  • Google Scholar
Gangarao R.
  • Gangarao R.
  • International Crops Research Institute for the Semi-arid Tropics (ICRISAT), P. O. Box 39063-00623 Nairobi, Kenya.
  • Google Scholar


  •  Received: 08 April 2019
  •  Accepted: 11 February 2020
  •  Published: 30 November 2020

References

Amede T, Schubert S (2003). Mechanisms of drought resistance in grain: II Stomatal regulation and root growth. SINET: Ethiopian Journal of Science 26(2):137-144.
Crossref

 

Benjamin JG, Nielsen DC (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research 97:248-253.
Crossref

 
 

Berger JD, Turner NC, Siddique KHM, Knights EJ, Brinsmead RB, Mock I, Edmondson C, Khan TN (2004). Genotype by environment studies across Australia reveals the importance of phenology for chickpea (Cicer arietinum L.) improvement. Australian Journal of Agricultural Research 55:1071-1084.
Crossref

 
 

Blum A (1996). Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation 20:135-148.
Crossref

 
 

Blum A (2010). Plant breeding for water-limited environments. Springer Science and Business Media. Available at: 

View

 
 

Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science 4:442.
Crossref

 
 

Gowda VR, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011). Root biology and genetic improvement for drought avoidance in rice. Field Crops Research 122(1):1-13.
Crossref

 
 

Gregory PJ (1988). Root growth of chickpea, faba bean, lentil and pea and effects of water and salt stress. In: Summerfield RJ (ed.), World Crops: Cool Season Food Legumes. Kluwer, Dordrecht, The Netherlands pp. 857-867.
Crossref

 
 

Jaetzold R, Schmidt H (1983). Farm management handbook of Kenya, volume II: Natural conditions and farm management information. Part A: West Kenya; Part B: Central Kenya: Part C: East Kenya, Nairobi: Ministry of Agriculture.

 
 

Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R (2006). Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research 95(2-3):171-181.
Crossref

 
 

Kashiwagi J, Krishnamurthy L, Gaur PM, Upadhyaya HD, Varshney RK, Tobita S (2013). Traits of relevance to improve yield under terminal drought stress in chickpea (Cicer arietinum L.). Field Crops Research 145:88-95.
Crossref

 
 

Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna HS, Vandez CV, Serraj R (2005). Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146(3):213-222.
Crossref

 
 

Kaspar T, Stanley C, Taylor H (1978). soybean root growth during the reproductive stages of development. Agronomy Journal 70:1105-1107.
Crossref

 
 

Kimurto P, Oyier M, Mulwa R, Songok S, Towett B, Cheruiyot E, Varshney RK, Gaur PM, Mahender T, Ganga Rao NV, Silim S (2017). Performance of marker assisted backcross breeding (MABC) elite chickpea lines under drought conditions in Kenya.Available at: 

View

 
 

Kimurto PK, Kinyua MG, Birech R, Korir PC, Njoka EM, Njau PN (2005). Root and shoot characteristics as selection criteria for drought tolerance in bread wheat (Triticum aestivum L.) at seedling stage under tropical environment. Journal of Discovery and Innovation 17(1-2):74-84.
Crossref

 
 

Kirkegaard JA, Lilley JM, Howe GN, Graham JM (2007). Impact of subsoil water use on wheat yield. Australian Journal of Agricultural Research 58(4):303-315.
Crossref

 
 

Kosgei A (2015). Genetic analysis and marker assisted breeding for drought tolerance and yield in chickpea (Cicer arietinum L.). Doctor of philosophy Thesis, West Africa Centre for Crop Improvement (WAACI), University of Ghana Legon, Ghana.

 
 

Krauss U, Deacon JW (1994). Root turnover of groundnut (Arachis hypogaea L.) in soil tubes. Plant and Soil 166(2):259-270.
Crossref

 
 

Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing 17(10):1867-1884.
Crossref

 
 

Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Serraj R (2003). Genetic diversity of drought-avoidance root traits in the mini-core germplasm collection of chickpea. International Chickpea and Pigeonpea Newsletter 10:21-24.

 
 

Lalitha N, Upadhyaya HD, Krishnamurthy L, Kashiwagi J, Kavikishor PB, Singh S (2015). Assessing Genetic Variability for Root Traits and Identification of Trait‐Specific Germplasm in Chickpea Reference Set. Crop Science 55(5):2034-2045.
Crossref

 
 

Li Y, Sperry JS, Shao M (2009). Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance. Environmental and Experimental Botany 66(2):341-346.
Crossref

 
 

Liao M, Palta JA, Fillery IR (2006). Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research 57(10):1097-1107.
Crossref

 
 

Lilley JM, Kirkegaard JA (2011). Benefits of increased soil exploration by wheat roots. Field Crops Research 122(2):118-130.
Crossref

 
 

Ludlow MM, Muchow RC (1990). Critical evaluation of traits for improving crop yields in water-limited environments. In: Brady, N.C. (Ed.), Advan. In Agronomy 43. Academic Press, New York, NY, USA. pp. 107-153.
Crossref

 
 

Lynch JP (2007). Roots of the second green revolution. Australian Journal of Botany 55:493-512.
Crossref

 
 

Manschadi AM, Christopher J, deVoil P, Hammer GL (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology 33(9):823-837.
Crossref

 
 

Matsui T, Singh BB (2003). Root characteristics in cowpea related to drought tolerance at the seedling stage. Experimental Agriculture 39(1):29.
Crossref

 
 

Munns R (2011). Plant Adaptations to Salt and Water Stress: Differences and Commonalities. Journal of Advances in Botanical Research 57:1-32.
Crossref

 
 

Muriuki R, Kimurto P, Vincent V, Ganga R, Siambi M, Silim S (2018). Effects of drought stress on yield performance of parental chickpea genotypes in semi-arid tropics. Journal of Life Sciences 12(3):109.
Crossref

 
 

Nayak SN (2010). Identification of QTLs and genes for drought tolerance using linkage mapping and association mapping approaches in chickpea (Cicer arietinum L.). PHD thesis, Osmania University, Hyderabad, India. Available at: 

View

 
 

Nayak SN (2010). Identification of QTLs and genes for drought tolerance using linkage mapping and association mapping approaches in chickpea (Cicer arietinum) (Doctoral dissertation, Osmania University, Hyderabad, India).

 
 

Ober E, Le Bloa M, Rajabi A, Smith C (2005). Genotypic differences in rooting patterns and soil water extraction related to drought tolerance in sugar beet. Comparative biochemistry and physiology a-molecular and integrative physiology pp. S302-S302.

 
 

Ondiek JO, Ogore PB, Shakala EK, Kaburu GM (2013). Feed intake, digestibility and performance of growing small East African goats offered maize (Zea mays) stover supplemented with Balanite saegyptiaca and Acacia tortilis leaf forages: Basic Research Journal of Agricultural Science and Review 2:(1).

 
 

Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, Watt M (2011). Large root systems: are they useful in adapting wheat to dry environments?. Functional Plant Biology 38(5):347-354.
Crossref

 
 

Passioura JB (1983). Roots and drought resistance. Agricultural Water Management 7(1-3):265-280.
Crossref

 
 

Passioura JB (2006). The perils of pot experiments. Functional Plant Biology 33(12):1075-1079.
Crossref

 
 

Passioura JB (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders?. Functional Plant Biology 39(11):851-859.
Crossref

 
 

Pooran M, Krishnamurthy L, Kashiwagi J (2008). Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)- Current status research at ICRISAT. Plant Production Science 11(1):3-11.
Crossref

 
 

Price AH, Steele KA, Moore BJ, Jones RGW (2002). Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Research 76(1):25-43.
Crossref

 
 

Purushothaman R, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2017). Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crops Research 201:146-161.
Crossref

 
 

Purushothaman R, Upadhyaya HD, Gaur PM, Gowda CLL, Krishnamurthy L (2014). Kabuli and desi chickpeas differ in their requirement for reproductive duration. Field Crops Research 163:24-31.
Crossref

 
 

Reynolds BC, Hunter MD (2001). Responses of soil respiration, soil nutrients, and litter decomposition to inputs from canopy herbivores. Soil Biology and Biochemistry 33(12-13):1641-1652.
Crossref

 
 

Reynolds M, Dreccer F, Trethowan R (2007). Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany 58(2):177-186.
Crossref

 
 

Sarker A, Erskine W, Singh M (2005). Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genetic Resources and Crop Evolution 52(1):89-97.
Crossref

 
 

Saxena NP (1987). Problems and prospects to screen and breed for tolerance to soil salinity: A case study with chickpea. Available at: 

View

 
 

Saxena NP (2003). Management of Drought In Chickpea-Holistic Approach. In: Saxena NP (ed.), Management of Agricultural Drought-Agronomic And Genetic Options. Oxford And IBH Publishing Co.Pvt Ltd. New Delhi, India pp. 103-122.

 
 

Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch JH (2004). Variation in root traits of chickpea (Cicer arietinum L.) Grown under terminal drought. Field Crops Research 88:115-127.
Crossref

 
 

Shaxson TF, Barber RG (2003). Optimizing soil moisture for plant production: The significance of soil porosity (No. 79). Food and Agriculture Organization.

 
 

Silim S, Saxena M (1993). Adaptation of spring-sown chickpea to the Mediterranean basin: i response to moisture supply. Field Crops Research 34:121-136.
Crossref

 
 

Sinclair TR, Messina CD, Beatty A, Samples M (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal 102(2):475-482.
Crossref

 
 

Sponchiando B, White J, Castillo J, Jones P (1989). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture Journal 25:249-257.
Crossref

 
 

Thomas S (1995). Growth and yield responses of barley and chickpea to water stress under three environments in South Queensland. II. Root growth and soil water extraction pattern. Australian Journal of Agricultural Research 46:17-33.
Crossref

 
 

Tuberosa R, Salvi S (2006). Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science 11(8):405-412.
Crossref

 
 

Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002). Mapping QTLs regulating morpho‐physiological traits and yield: Case studies, shortcomings and perspectives in drought‐stressed maize. Annals of Botany 89(7):941-963.
Crossref

 
 

Turner NC, Wright GC, Siddique KHM (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy 71:193-231.
Crossref

 
 

Upadhyaya HD, Ortiz R (2001). A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theoretical and Applied Genetics 102(8):1292-1298.
Crossref

 
 

Vadez V (2014). Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Research 165:15-24.
Crossref

 
 

Vadez V, Rao S, Kholova J, Krishnamurthy L, Kashiwagi J, Ratnakumar P, Sharma KK, Bhatnagar-Mathur P, Basu PS (2008). Roots research for legume tolerance to drought: Quo vadis? Journal of Food Legumes 21(2):77-85.

 
 

Vadez V, Soltani A, Sinclair TR (2012). Modelling possible benefits of root related traits to enhance terminal drought adaptation of chickpea. Field Crops Research 137:108-115.
Crossref

 
 

Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A (2014). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 127(2):445-462.
Crossref

 
 

Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SS, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany 63(9):3485-3498.
Crossref

 
 

Watt M, Kirkegaard JA, Rebetzke GJ (2005). A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Functional Plant Biology 32(8):695-706.
Crossref

 
 

Zaman-Allah M, Jenkinson DM, Vadez V (2011). Chickpea Genotypes Contrasting For Seed Yield Under Terminal Drought Stress In The Field Differ For Traits Related To The Control Of Water Use. Functional Plant Biology 38:270-281.
Crossref