International Journal of
Genetics and Molecular Biology

  • Abbreviation: Int. J. Genet. Mol. Biol.
  • Language: English
  • ISSN: 2006-9863
  • DOI: 10.5897/IJGMB
  • Start Year: 2009
  • Published Articles: 138

Full Length Research Paper

Estimation of genetic parameters for first-lactation test-day milk yield in Holstein Friesian cows fitting random regression models

Meseret S.
  • Meseret S.
  • 1. Department of Animal Production Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Ethiopia; 3. Department of Animal and Range Sciences, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
  • Google Scholar
Tamir B.
  • Tamir B.
  • Department of Animal Production Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Ethiopia
  • Google Scholar
Negussie E.*
  • Negussie E.*
  • Natural Resources Institute Finland (LUKE), Biometrical Genetics, Finland
  • Google Scholar

  •  Received: 14 March 2015
  •  Accepted: 16 June 2015
  •  Published: 30 June 2015


Abdullahpour R, Shahrbabak MM, Nejati-Javaremi A, Torshizi RV (2010). Genetic Analysis of Dairy milk, fat and protein percentage of Iranian First lactation Holstein Cattle. World Appl. Sci. J. 10(9):1042-1046.


Bignardi AB, El Faro L, Torres Júnior RAA, Cardoso VL, Machado PF, Albuquerque LG (2011). Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows. Genet. Mol. Biol. 10(4): 3565-3575.


Cobuci JA, Euclydes RF, Lopes PS, Costa CN, Torres RdeA, Pereira CS (2005). Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model.Genet. Mol. Bio. 28(1):75-83.


Cobuci JA, Costa CN, Braccini NJ, de Freitas AF (2011). Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling. R. Bras. Zootec. 40(3): 557-567.


Druet T, JaffrezicF, Boichard D, Ducrocq V (2003). Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. J. Dairy Sci. 86(7):2480-2490.


El Faro L, Cardoso VL, de Albuquerque LG (2008). Variance component estimates for test-day milk yield applying random regression models. Genet. Mol. Biol. 31(3):665-673.


Interbull (2012). Description of National Genetic Evaluation Systems for dairy cattle traits as applied in different Interbull member countries.


Jamrozik J, Schaeffer LR (1997). Estimates of genetic parameters for a test-day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 80(4):762-770.


Jamrozik J, Schaeffer LR (2002). Bayesian comparison of random regression models for test-day yields in dairy cattle. 7th World Congr.Genet.Appl. Livest. Prod. Montpellier, France.


Jensen J (2001). Genetic evaluation of Dairy Cattle Using Test-Day models. J. Dairy Sci., 84(12):2803-2812.


Kirkpatrick M, Hill WG, Thompson R (1994). Estimating the covariance structure of traits during growth and aging illustrated with lactations in dairy cattle. Genetic Research, 64(1):57-69.


Lidauer M, Mäntysaari E (1999). Multiple trait reduced rank random regression test day model for production traits. Zurich, Switzerland, August 26-27, 1999. Interbull Bulletin, No. 22, 74.


Lidauer M, Mäntysaari EA, Strandén I (2003).Comparison of test-day models for genetic evaluation of production traits in dairy cattle. Livest. Prod. Sci. 79(1):73-86.


Liu YX, Zhang J, Schaeffer LR, Yang RQ, Zhang WL (2006). Optimal Random Regression Models for Milk Production in Dairy Cattle. J. Dairy Sci. 89(6):2233-2235.


Liu Z, Reinhardt F, Reents R (2000). Estimating parameters of a random regression test day model for first three lactation milk production traits using the covariance function approach. Interbull Bull. 25: 74-80.


Madsen P, Jensen J (2013). DMU A Package for Analysing Multivariate Mixed Models. Version 6, release 5.2. Center for Quantitative Genetics and Genomics Dept. of Molecular Biology and Genetics, University of Aarhus Research Centre Foulum Box 50, 8830 Tjele Denmark.


Negussie E, Stranden I, Mäntysaari EA (2008). Genetic Association of Clinical Mastitis with Test-Day Somatic Cell Score and Milk Yield during First Lactation of Finnish Ayrshire Cows. J. Dairy Sci. 91(3):1189-1197.


Pool MH, Meuwissen THE (1999). Reduction of the number of parameters needed for a polynomial random regression test day model. Livest. Prod. Sci. 64:133-145.


Pool MH, Janss LLG, Meuwissen THE (2000). Genetic parameters of Legendre polynomials for first-parity lactation curves. J. Dairy Sci. 83(11):2640-2649.


Reents R (1996). The use of test day models in genetic evaluation. INTERBULL Bulletin No. 12.


Rekaya R, Caraba-o MJ, Toro MA (1999). Use of test day yields for the genetic evaluation of production traits in Holstein-Friesian cattle.Livest. Prod. Sci. 57(3): 203-217.


Santos DJA, Peixoto MG, Borquis RR, Verneque RS, Panetto JC, Tonhati H (2013). Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (Bosindicus) cows. Genet.Mol. Biol. 12(1):143-153.


Schaeffer LR, Jamrozik J (2008). Random regression models: a longitudinal perspective. J. Anim. Breed. Genet. 125(3):145-146.


Strabel T, Szyda J, Ptak E, Jamrozik J (2003). Comparison of Random Regression Test-Day Models for Production Traits of Dairy Cattle in Poland. Rome, Italy, August 28-30, 1999. Interbull Bulletin, No. 31, 197-201.


Swalve HH (2000). Theoretical basis and computational methods for different test-day genetic evaluation models. J. Dairy Sci. 83(5): 1115-1124.


Torshizi ME, ASlamenejad AA, Nassiri MR, Farhangfar H, Solkner J, Kovac M, Meszaros G, Malovrh S (2013). Analysis of Test Day Milk Yield by Random Regression Models and Evaluation of Persistency in Iranian Dairy Cows. Iranian J. Appl. Animal Sci. 3(1):67-76.


Wall E, Simm G, Moran D (2010). Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal 4(3):366-376.


Wilmink JBM (1987). Adjustment of test-day milk, fat and protein yields for age, season and stage of lactation. Livest. Prod. Sci. 16(4):335-348.