International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2529

Full Length Research Paper

The first integral method and its application for finding the exact solutions of nonlinear fractional partial differential equations (PDES) in the mathematical physics

Elsayed M. E. Zayed
  • Elsayed M. E. Zayed
  • Department of Mathematics, Faculty of Sciences, Zagazig University, Zagazig, Egypt.
  • Google Scholar
Yasser A. Amer
  • Yasser A. Amer
  • Department of Mathematics, Faculty of Sciences, Zagazig University, Zagazig, Egypt.
  • Google Scholar


  •  Received: 11 February 2014
  •  Accepted: 21 March 2014
  •  Published: 30 April 2014

References

Abazar R (2011). The solitary wave soutions for Zoomeron equation, Appl. Math. Sci. 5:2943-2949.
 
Abbasbanby S, Shirzadi A (2010). Homotopy analysis method for multiple solutions of the fractional Sturm- Liouville problems, Numer. Algorithms 54:521-532.
Crossref
 
 
Alquran M, Al-Khaled K (2012). Mathematical methods for reliable treatment of (2+1)-dimentsional Zoomeron equation, Math. Sci. 6:11.
Crossref
 
 
Baleanu D, Machado JAT, Carlo Cattani T, Baleanu MC, Yang XJ (2014). Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators, Abst. Appl. Anal. Article ID 535048, P. 6.
 
 
Barania G., Domairry G, Gorji M, Rezania, A (2010). An approximation of the analytic solution of some nonlinear heat transfer in Fin and 3Ddiffusion equations using HAM, Numer. Methods in partial Differential Equations 26:1-13.
Crossref
 
 
Bourbak N (1972). Commutative Algebra, Paris Addison-Wesley.
 
 
Dendy RO (1990). Plasma Dynamics. Oxford University Press, Oxford. PMid:2339477
 
 
Ebadi G, Rashedi S, Bekir A (2010). New exact solutions to complex Klein-Gordon Schrodinger equations by the (G'/G) – expansion, Int. J. Nonlinear Sci. 10:475-483.
 
 
El-Sayed AMA, Rida SZ, Arafa AAM (2009). Exact solutions of fractional- order biological population model, Commun. Theor. Phys. (Beijing) 52:992-996.
Crossref
 
 
Feng ZS, Roger K (2007). Traveling waves to Burgers-Korteweg-deVries-type equation with higher-order nonlinearties, J. Math. Anal. Appl. 328:1435-1450. http://dx.doi.org/10.1016/j.jmaa.2006.05.085
Crossref
 
 
Feng ZS (2008). Travling wave behavior for a generalized fisher equation, Chaos Soltions and Fractals 38:481-488.
Crossref
 
 
Fouladi FE, Hosseinzadeh E, Barari A (2010). Highly nonlinear temperature- dependent Fin analysis by variational iteration method, Heat Transfer Res. 41:155-165.
Crossref
 
 
Ganji Z, D.Ganji D, A.D.Ganji AD, Rostamian M (2010). Analytical solution of time-fractional Navier- Stokes equation in polar coordinate by homotopy perturbation method, Numer. Methods Partial Differential Equations 26:117-124.
Crossref
 
 
Gepreel KA (2011).The homotopy perturbation method applaied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation, Appl. Math.Lett. 24:1428-1434.
Crossref
 
 
Gupta PK, Singh M (2011). Homotopy perturbation method for fractional Fornberg-Whitham equation, Comput. Math. Appl. 61:50-54.
Crossref
 
 
He JH (2012). Asymptotic Methods for Solitary Solutions and Compactons, Abstract and applied Analysis, Article ID 916793, P.130.
 
 
Inc M (2008). The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variation iteration method, J. Math. Anal. Appl. 345:476-484.
 
 
Jumarie G (2006a). Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order, Appl. Math. Lett. 19:873-880. http://dx.doi.org/10.1016/j.aml.2005.10.016
Crossref
 
 
Jumarie G (2006b). Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl. 51:1367-1376.
Crossref
 
 
Kilbas AA, Srivastava HM, Trujillo JJ (2006). Theory and Application of Fractional Differential Equations, Elsevier, San Diego.
 
 
Liu CF, Kong SS, Yuan SJ (2013). Reconsterucyive schemes for variational iteration method within Yang-Laplase transform with application to fractal heat conduction problem. Thermal Sci. 17: 715-721.
Crossref
 
 
Lu BHQ, Zhang HQ, Xie FD (2010). Traveling wave solutions of nonlinear partial equations by using the first integral method, Appl. Math. Comput. 216:1329-1336.
Crossref
 
 
Ma WX, Fuchssteiner B (1996). Explicit and exact solutions to Kolmogorov-Petrovskii-Piskunov equation, Int. J. Nonli. Mech. 31:329-338
Crossref
 
 
Miller KS, Ross BB (1993). An Introduction to the Fractional Differential Equations, Wiley, New York.
 
 
Podlubny I (1999). Fractional Differential, Acadmic press, San Diego.
 
 
Rashidi MM, Domairry G, Doosthosseini A, Dinarvand S (2009). Explicit approximate solution of the coupled KdV equations by using the homotopy analysis method. Int, J. Math. Anal. 12:581- 589.
 
 
Raslan HR (2008). The first integral method for solving some important nonlinear partial differential equations, Nonli. Dyn. 53:281-291.
 
 
Safari M, Ganji DD, Moslemi M (2009). Application of He's variation alliteration method and Adomian's decomposition method to the fractional KdV- Burgers-Kuramoto equation, Comput. Math. Appl. 58:2091-2097. Crossref
 
 
Shang YY, Huang YH, Yuan W (2008). New Exact traveling wave solutions for Klein-Gordon equations, Comput. Math. Appl. 56:1441-1450.
Crossref
 
 
Song LN, Zhang HQ (2009). Solving the fractional BBM-Burgers equation using the homotopy analysis method, Chaos Solutions Fractals 40:1616-1622. http://dx.doi.org/10.1016/j.chaos.2007.09.042
Crossref
 
 
Taghizadeh T, Mirzazadeh M, Farahrooz F (2011). Exact solutions of the nonlinear Schrodinger equation by the first integral method, J. Math. Anal. Appl. 374:549-553. http://dx.doi.org/10.1016/j.jmaa.2010.08.050
Crossref
 
 
Thornhill SG, Haar D (1978). Langmir turbulence and modulationl instability, Phys, Rep. 43:43-99.
Crossref
 
 
Wang SQ, Yong JU, Yang YJ, and Jassim HK, (2014). Local Fractional Function Decomposition Method for Solving Inhomogeneous Wave Equations with Local Fractional Derivative, Abst. Appl. Anal., Article ID 176395. P. 7.
 
 
Wu GC, Lee EWM (2010). Fractional variational iteration method and its application, Phys. Lett. A 374:2506-2509.
Crossref
 
 
Yang XJ, Baleanu D (2013). Fractal heat conduction problem solved by local fractional variation method, Therm. Sci. 17:625-628
Crossref
 
 
Yang XJ, Baleanu D, Zhong WP (2013). Approximate solutions for diffusion equations on Cantor space-time, Proc. Rom. Acad. Series A 14:27-133.
 
 
Yang XJ, Srivastava HM, He JH, Baleanu D (2013). Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Phys. Lett. A. 377:1996-1700.
Crossref
 
 
Zhao CG, Yang AM, Jafari H, Haghbin A (2014). The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative, Abst. Appl. Anal. Article ID 386459, P. 5.