International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2572

Full Length Research Paper

Relativistic causality versus superluminal communication: Is the quantum mechanics a semi-empirical theory?

Piero Chiarelli
  • Piero Chiarelli
  • National Council of Research of Italy, Area of Pisa, 56124 Pisa, Moruzzi 1, Italy Interdepartmental Center ?E. Piaggio? University of Pisa, Italy.
  • Google Scholar


  •  Received: 26 November 2014
  •  Accepted: 04 March 2015
  •  Published: 30 April 2015

References

Bell JS (1964). On the Einstain-Podolsky-Rosen paradox". Physics. 1:195-200.
 
Bialyniki-Birula I, Cieplak M, Kaminski J (1992). "Theory of Quanta". Oxford University press, Ny. 87-111, 369-381.
 
Bohm D (1952). A suggested interpretation of quantum theory in terms of "hidden" variables. Phys Rev. 85:166,180.
 
Bohm D, Vigier JP (1954). Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96:208-216.
 
Bousquet D, Hughes KH, Micha DA, Burghardt I (2001). Extended hydrodynamic approach to quantum-classical nonequilibrium evolution I. Theory. J. Chem. Phys. P. 134.
 
Bousso R (2002). The holographic principle. Rev. Mod Phys. 74:825.
 
Breit JD, Gupta S, Zaks A (1984). Stochastic quantization and regularization. Nucl. Phys. B. 233:61.
 
Calzetta E, Hu BL (1995). Quantum Fluctuations, Decoherence of the Mean Field, and Structure Formation in the Early Universe. Phys. Rev. D. 52:6770-6788.
 
Cerruti NR, Lakshminarayan A, Lefebvre TH, Tomsovic S (2000). Exploring phase space localization of chaotic eigenstates via parametric variation. Phys. Rev. E 63:016208.
 
Chiarelli P (2012). Is the quantum hydrodynamic analogy more general than the Schrödinger approach? Intell. Arch. 1(2):21.
 
Chiarelli P (2013a). The classical mechanics from the quantum equation. Phys. Rew. Res. Int. 3(1):1-9.
 
Chiarelli P (2013b). The uncertainty principle derived by the finite transmission speed of light and information. J. Adv. Phys. 2013; 3:257-266.
 
Chiarelli P (2013c). Quantum to classical transition in the stochastic hydrodynamic analogy: The explanation of the Lindemann relation and the analogies between the maximum of density at lambda point and that at the water-ice phase transition. Phys. Rev. Res. Int. 3(4): 348-366.
 
Chiarelli P (2013d). Can fluctuating quantum states acquire the classical behavior on large scale? J. Adv. Phys. 2:139-163.
 
Chiarelli P (2014a) .The quantum hydrodynamic formulation of Dirac equation and its generalized stochastic and non-linear analogs, accepted for publication to Phys. In Press.
 
Chiarelli P (2014b). The quantum potential: the missing interaction in the density maximum of He4 at the lambda point? Am. J. Phys. Chem. 2(6):122-131.
 
Clauser JF, Horne MA, Shimony A, Holt RA (1969). Proposed experiment to test local hidden-variable theories". Phys. Rev. Lett. 23(15):880–884.
 
Einstein A, Podolsky B, Rosen N (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 4:777-780 .
 
Gardner CL (1994). The quantum hydrodynamic model for semiconductor devices. SIAM. J. Appl. Math. 54:409.
 
Greenberger DM, Horne MA, Shimony A, Zeilinger A (1990). Bell's theorem without inequalities. Am. J. Phys. 58(12):1131-43.
 
Guerra F, Ruggero P (1973). New interpretation of the euclidean-Marcov field in the framework of physical Minkowski space-time. Phys rev. Lett. 31:1022 .
 
Jánossy L (1962). Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169(79):8.
 
Jona G, Martinelli F, Scoppola E (1981). New approach to the semiclassical limit of quantum mechanics. Comm. Math. Phys. 80:233.
 
300 Int. J. Phys. Sci.
 
Lombardo FC, Villar PI (2005). Decoherence induced by zero-point fluctuations in quantum Brownian motion. Phys. Lett. A. 336:16–24.
 
Madelung E (1926). Quanten theorie in hydrodynamische form (Quantum theory in the hydrodynamic form). Z. Phys. 40: 322-326.
 
Mariano A, Facchi P, Pascazio S (2001). Decoherence and Fluctuations in Quantum Interference Experiments, Fortschr. Phys. 49(10-11):1033–1039.
 
Maudlin T (1994). Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics, Cambridge, Massachusetts: Blackwell.
 
Morato LM, Ugolini S (2011). Stochastic description of a Bose–Einstein Condensate. Annales Henri Poincaré. 12(8):1601-1612.
 
Nelson E (1985). Quantum Fluctuations (Princeton University Press, New York.
 
Nelson E (1967). Dynamical Theory of Brownian Motion (Princeton University Press, London.
 
Oppenheim J, Wehner S (2007). The uncertainty principle determines the non-locality of quantum mechanics. Phys. Rev. Lett.103:1072-1074.
 
Ozawa M (2003). Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement, Phys. Rev. A; 67:042105 (6).
 
Parisi G, Wu YS (1981). Perturbation Theory Without Gauge Fixing. Sci. Sin. P. 24.
 
Popescu S, Rohrlich D (1994). Nonlocality as an axiom". Foundation of Phys. 24(3):379–385.
 
Ruggiero P, Zannetti M (1981). Critical Phenomena at T=0 and Stochastic Quantization. Phys. Rev. Lett. 47: 1231.
 
Ruggiero P, Zannetti M (1983a). Microscopic derivation of the stochastic process for the quantum Brownian oscillator. Phys. Rev. A (28):987.
 
Ruggiero P, Zannetti M (1983b). Quantum-classical crossover in critical dynamics. Phys. Rev. B(27):3001.
 
Schrödinger E (1935). Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften. 23:807–812, 823–828, 844–849. Hawking S, www.hawking.org.uk/does-god-play-dice.html.
Crossref
 
Susskind L, Thorlacius L, Uglum J (1993). The stretched horizon and black hole complementarity. Phys. Rev. D. 48:3743.
 
t'Hooft G (1988). Equivalence relations between deterministic and quantum mechanical systems. J. Statistical Phys. 53: 323.
 
t'Hooft G (1996). Quantization of point particles in (2+l)-dimensional gravity and spacetime discreteness, Class. Quant. Grav. 13:1023.
 
t'Hooft G (1999). Quantum gravity as a dissipative deterministic system. Class. Quant. Grav. 16:3263.
 
Terlecki G, Grun N, Scheid W (1982). Solution of the time-dependent Schrödinger equation with a trajectory method and application to H+-H scattering. Phys. Lett. 88(A):33.
 
von Neumann J (1932/1955). In Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, translated into English by Beyer, R.T., Princeton University Press, Princeton, cited by Baggott, J. (2004). Beyond Measure: Modern physics, philosophy, and the meaning of quantum theory, Oxford University Press, Oxford, ISBN 0-19-852927-9, pp.144-145.
 
Wang C, Bonifacio P, Bingham R, Mendonca JT (2008). Detection of quantum decoherence due to spacetime fluctuations, 37th COSPAR Scientific Assembly. 13-20 July Montréal, Canada. P. 3390.
 
Weiner JH (1983). Statistical Mechanics of Elasticity. John Wiley & Sons, New York, pp. 315-317.
 
Weiner JH, Askar A (1971). Particle method for the numerical solution of the time-dependent Schrödinger Equation. J. Chem. Phys. 54:3534.
 
Weiner JH, Forman R (1974). Rate theory for solids. V. Quantum Brownian-motion model. Phys. Rev. B. 10:325.
 
Wyatt RE (2005). Quantum dynamics with trajectories: Introduction to quantum hydrodynamics, Springer, Heidelberg; P. 9.
 
Zwanziger D (1984). Covariant quantization of gauge fields without Gribov ambiguity. Nucl. Phys. B. 192:259.