International Journal of
Water Resources and Environmental Engineering

  • Abbreviation: Int. J. Water Res. Environ. Eng.
  • Language: English
  • ISSN: 2141-6613
  • DOI: 10.5897/IJWREE
  • Start Year: 2009
  • Published Articles: 347

Full Length Research Paper

Assessment of discharge and sediment transport from different forest cover types in lower Himalaya using Soil and Water Assessment Tool (SWAT)

J. V. Tyagi
  • J. V. Tyagi
  • National Institute of Hydrology, Jal Vigyan Bhawan, Roorkee - 247 667, Uttarakhand, India
  • Google Scholar
S. P. Rai
  • S. P. Rai
  • National Institute of Hydrology, Jal Vigyan Bhawan, Roorkee - 247 667, Uttarakhand, India
  • Google Scholar
Nuzhat Qazi
  • Nuzhat Qazi
  • Forest Research Institute, Dehradun - 248006, Uttarakhand, India
  • Google Scholar
M. P. Singh
  • M. P. Singh
  • Forest Research Institute, Dehradun - 248006, Uttarakhand, India
  • Google Scholar


  •  Accepted: 22 November 2013
  •  Published: 01 January 2014

References

 
Arabi M, Frakenberger J, Engel BA, Arnold JG (2008). Representation of agricultural management practices with SWAT. Hydrol. Proc. 22(16):3042-3055.
Crossref
 
Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998). Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 34(1):73-89.
Crossref
 
 
Ayana AB, Edossa DC, Kositsakulchai E (2012). Simulation of sediment yield using SWAT model in Fincha Watershed, Ethiopia. Kasetsart J. Nat. Sci. 46:283-297.
 
 
Bärlund I, Kirkkala T, Malve O, Kämäri J (2007). Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment. Environ. Model. Softw. 22(5):719-724.
Crossref
 
 
Bartarya SK (1995). Hydrogeology and water resources of intermountain, Doon valley. Himalayan Geol. 6(2):17-28.
 
 
Beasley DB, Huggins LF, Monke EJ (1980). ANSWERS User's Manual, Purdue University, West Lafayatte.
 
 
Bhaskar NR, James WP, Devulapalli RS (1992). Hydrologic parameter estimation using geographic information system. J. Water Resour. Plan. Manage. 118(5):492-512.
Crossref
 
 
Bingner RL (1996). Runoff simulated from Goodwin Creek watershed using SWAT. Trans. ASAE 39(1):85-90.
Crossref
 
 
Borah DK, Bera M (2003). Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Trans. ASAE 46(6):1553-1566.
Crossref
 
 
Chow VT, Maidment DR, Mays LW (Eds.) (1998). Applied Hydrology. McGraw-Hill Inc., New York.
 
 
Das S, Ruda RP, Gharabaghi B, Goel PK, Singh A, Ahmed I (2007). Comparing the performance of SWAT and AnnAGNPS model in a watershed in Ontario. ASABE publishing paper: 701P0207, ASABE, St. Joseph, MI, USA.
 
 
Hession WC, Shanholtz VO (1998). A geographic information system for targeting non-point source agricultural pollution. J. Soil Water Conserv. 43(3):264-266.
 
 
Jain SK, Kumar S, Varghese J (2004). Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Res. Manage. 15(1):41-54.
Crossref
 
 
Jain SK, Tyagi J, Singh V (2010). Simulation of runoff and sediment yield for a Himalayan watershed Using SWAT Model. J. Water Resour. Prot. 2:267-281.
Crossref
 
 
Kannan N, White SM, Worrall F, Whelan MJ (2007). Hydrological modelling of a small catchment using SWAT 2000 - Ensuring correct flow partitioning for contaminant modelling. J. Hydrol. 334(1-2):64-72.
Crossref
 
 
Kannan N, Santhi C, Arnold JG (2008). Development of an automated procedure for estimation of the spatial variation of runoff in large river basins. J. Hydrol. 359(1-2):1-15.
Crossref
 
 
Knisel WG (1980). CREAMS: A Field-scale Model for chemical, runoff, and erosion from Agricultural Management Systems. USDA Conservation Research Report No. 26, Washington, D.C.
 
 
Krause P, Boyle DP, Bäse F (2005). Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5:83-87.
Crossref
 
 
Leonard RA, Knisel WG, Still DA (1987). GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE 30(5):1403-1418.
Crossref
 
 
Maidment DR (1993). GIS and hydrologic modeling. In: Environmental Modeling with GIS, eds. MF Goodchild, BO Parks, L Steyaert. New York, Oxford University Press.
 
 
Mulungu DMM, Munishi SE (2007). Simiyu River catchment parameterization using SWAT model. Phys. Chem. Earth 32:1032-1039.
Crossref
 
 
Muttiah RS, Wurbs RA (2002). Modeling the impacts of climate change on water supply reliabilities. Water Int. Int. Water Resour. Assoc. 27(3):407-419.
 
 
Nash JE, Sutcliffe JV (1970). River flow forecasting through conceptual models: Part I. A discussion of principles. J. Hydrol. 10(3):282-290.
Crossref
 
 
Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2002). Soil and Water Assessment Tool (SWAT) User's Manual, Version 2000. Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA.
 
 
Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005). Soil and Water Assessment Tool: Theoretical Documentation. Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA.
 
 
Oeurng C, Sauvage S, Sánchez-Pérez JM (2011). Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 401:145-153.
Crossref
 
 
Pandey VK, Panda SN, Sudhakar S (2005). Modelling of an agricultural watershed using remote sensing and a geographic information system. Biosyst. Eng. 90(3):331-347.
Crossref
 
 
Pandey VK, Panda SN, Pandey A, Sudhakar S (2009). Evaluation of effective management plan for an agricultural watershed using AVSWAT model. Rem. Sens. GIS. Environ. Geol. 56:993-1008.
Crossref
 
 
Parajuli PB, Mankin KR, Barnes PL (2007). New Methods in Modeling Source Specific Bacteria Scale using SWAT. ASABE publication No. 701P0207. ASABE: St. Joseph, MI, USA.
 
 
Peterson JR, Hamlett JM (1998). Hydrologic calibration of the SWAT model in a watershed containing fragipan soils. J. Am. Water Res. Assoc. 34(3):531-544.
Crossref
 
 
Rautela P, Joshi GC, Bhaisora B (2010). Seismic vulnerability and risk in the Himalayan township of Mussoorie, Uttarakhand, India. Curr. Sci. 99(4):521-526.
 
 
Rosenthal WD, Srinivasan R, Arnold JG (1995). Alternative river management using a linked GIS-hydrology model. Trans. ASAE 38(3):783-790.
Crossref
 
 
Sharda VN, Ojaswi PR (2006). Hydrological evaluation of forest tree covers in different agro-ecological regions of India. Paper presented in Int. Workshop on Impacts of Reforestation of Degraded Lands on Landscape hydrology in the Asian region, 6 -10 March 2006, Roorkee, India.
 
 
Singh RK, Panda RK, Satapathy KK, Ngachan SV (2011). Simulation of runoff and sediment yield from a hilly watershed in the eastern Himalaya, India using the WEPP model. J. Hydrol. 405(3-4):261-276.
Crossref
 
 
Smith R (1992). OPUS, An integrated simulation model for transport of nonpoint sources pollutants at the field scale, Volume I: Documentation. ARS-95. Washington, D.C.: USDA Agricultural Research Service.
 
 
Spruill CA, Workman SR, Taraba JL (2000). Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans. ASAE 43(6):1431-1439.
Crossref
 
 
Srinivasan R, Engel BA (1991). A Knowledge Based Approach to Extract Input Data From GIS. ASAE Paper No. 91-7045.
 
 
Srinivasan R, Ramanarayanan TS, Jayakrishnan R,Wang H (1997). Hydrologic modeling of Rio Grande/Rio Bravo basin. ASAE Paper No. 97-2236. St. Joseph, Mich.: ASAE.
 
 
Srinivasan M S, Gerald-Marchant P, Veith TL, Gburek WJ, Steenhuis TS (2005). Watershed-scale modeling of critical source areas of runoff generation and phosphorus transport. J. Am. Water Resour. Assoc. 41(2):361‐375.
Crossref
 
 
Thakur VC, Pandey AK (2004). Late Quaternary tectonic evolution of Dun in fault bend/ propagated fold system, Garhwal Sub-Himalaya. Curr. Sci. 87(11):1567-1576.
 
 
Tolson BA, Shoemaker CA (2007). Cannonsville reservoir watershed SWAT2000 model development, calibration, and validation. J. Hydrol. 337(1‐2):68‐86.
Crossref
 
 
Tripathi MP, Panda RK, Raghuwanshi NS (1999). Runoff estimation from a small watershed using SWAT model. Proceeding of International Conference on Water, Environment, Ecology, Socio-Economics and Health Engineering Seoul, Korea 143-152.
 
 
Tripathi MP, Panda RK, Raghuwanshi NS (2003). Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model. Biosyst. Eng. 85(3):365-379.
Crossref
 
 
USDA Soil Conservation Service (1972). National Engineering Handbook. Hydrology Section 4 (Chapters 4–10).
 
 
Varanou E, Gkouvatsou E, Baltas E, Mimikou M (2002). Quantity and quality integrated catchment modeling under climate change with use of soil and water assessment tool model. J. Hydrol. Eng. 7(3):228-244.
Crossref
 
 
Wang S, Kang S, Zhang L, Li F (2008). Modeling hydrological response to different land use and climate change scenarios in the Zamu River basin of northwest China. Hydrol. Proc. 22:2502-2510.
Crossref
 
 
Williams JR (1975). Sediment yield prediction with universal equation using runoff energy factor. In: Present and Prospective Technology for Predicting Sediment Yield and Sources, Proceeding of the Sediment Yield Workshop. USDA Sedimentation Lab., Oxford, MS, USA. 28–30 November, 1972, p. 244-252.
 
 
Williams JR, Renard KG, Dyke PT (1983). EPIC: A new method for assessing erosion's effect on soil productivity. J. Soil Water Conserv. 38(5):381-383.
 
 
Williams JR, Nicks AD, Arnold JG (1985). SWRRB, a simulator for water resources in rural basins. ASCE Hydrol. J. 111(6):970-986.
Crossref
 
 
Xu ZX, Pang JP, Liu CM, Li JY (2009). Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrol. Proc. 23: 3619-3630.
Crossref
 
 
Young RA, Onstad DD, Anderson WP (1989). AGNPS: A nonpoint source pollution model for evaluating agricultural watersheds. Soil and Water Cons. 44(2): 168-173.