International Journal of
Water Resources and Environmental Engineering

  • Abbreviation: Int. J. Water Res. Environ. Eng.
  • Language: English
  • ISSN: 2141-6613
  • DOI: 10.5897/IJWREE
  • Start Year: 2009
  • Published Articles: 347

Review

Prospective techniques for in-situ treatment and protection of aquifers: A sustainable hydrology review

Michael A. Nwachukwu
  • Michael A. Nwachukwu
  • Department of Environmental Technology, Federal University of Technology, Owerri, Nigeria.
  • Google Scholar


  •  Received: 25 October 2013
  •  Accepted: 07 April 2014
  •  Published: 30 April 2014

References

Barcelona M, Keely J, Pettijohn W, Wehrman A (1990). Contamination of ground water: Prevention, assessment, and restoration. Pollution Technology Review No. 184. Noyes, Park
 
Benaabidate L, Cholli M (2011). Groundwater stress and vulnerability to pollution of Saiss basin shallow aquifer, Morocco. 15th International Water Technology Conference, IWTC-15 2011, Alexandria, Egypt.
 
 
Brown CL, Pope GA, Abriola LM, Sepehrnoori K (2010). Simulation of surfactant-enhanced aquifer remediation. Water Resour. Res. 30(11):2959-2977.
Crossref
 
 
Key KC, Sublette KL, Johannes TW, Raes E, Sullivan E, Duba J, Ogles D, Baldwin BR, Biernacki A (2013). An In Situ Bioreactor for the Treatment of Petroleum Hydrocarbons in Groundwater. Remed. J. 23(3):55-84.
Crossref
 
 
 
Cherry AJ (1992). Developing rational goals for in situ remedial technologies. Subsurface Restor Conf, Dallas.
 
 
Elliott DW, Zhang WX (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 35:4922-4926
Crossref
 
 
Fetter CW (1993). Contaminant Hydrogeology. Macmillan Publishing Company, New York.
 
 
Faybishenko B, Hazen TC, Long PE, Brodie EL, Conrad ME, Hubbard SS, Christensen JN, Gavaskar A, Tatar L, Condit W (2008). Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation. Port Hueneme, CA: Naval Facilities Engineering Command; CR-05-007-ENV
 
 
Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang W (2003). Nanotechnology takes root. Civ. Eng. 73(5):64-69.
 
 
Gillham R, Vogan J, Gui L, Duchene M, Son J (2010). Iron barrier walls for chlorinated solvent remediation. In: Stroo, H. F.; Ward, C. H. (eds.), In Situ Remediation of Chlorinated Solvent Plumes. Springer Science+Business Media, NY, p. 537.
Crossref
 
 
Henn KW, Waddill DW (2006). Utilization of nanoscale zerovalent iron for source remediation - A case study. Remediation 16(2):57-77.
Crossref
 
 
Hubbard SS, Williams KH, Conrad ME, Faybishenko B, Peterson J, Chen J, Long PE, Hazen TC (2008). Geophysics for monitoring of hydrological and bio-geochemical transformations associated with contaminant remediation. Environ. Sci. Technol. 42:3757-3765.
Crossref
 
 
Istok, JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang YJ, White DC (2004). In situ bioreduction of Technetium and Uranium in a nitrate-contaminated aquifer. Environ. Sci. Technol. 38:468-475.
Crossref
 
 
Jaisi DP (2013). Stable isotope fractionations during reactive transport of phosphate in packed-bed sediment columns. J. Contam. Hydrol. 154:10-16.
Crossref
 
 
Macé C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, Kvapil P, Venkatakrishnan R, Zhang W-x (2006). Nanotechnology and groundwater remediation: A step forward in technology understanding. Rem. J. 16(2):23-33.
Crossref
 
 
Matheson LJ, Tratnyek PG (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci Technol. 28(12):2045-2053.
Crossref
 
 
Melloul AJ., Collin ML (2002). Prioritization of Sustainable Groundwater Management Needs: Case of Israel's Stressed Coastal Aquifer. Environ. Dev. Sustain. 4(4): 347-360.
Crossref
 
 
Melloul AJ, Collin ML (2000). Sustainable groundwater management of the stressed Coastal aquifer in the Gaza Region. Hydrol. Sci-J-des Sci. Hydrologiques 45(1):1-47.
 
 
McDonald MG, Harbough AW (1988). A modular three-dimensional finite-difference groundwater flow model, MODFLOW. U.S. Geo Survey Open-file Report 83-875.
 
 
Nwachukwu MA, Osoro E (2013). Assessment of environ hazards: Linking borrow pits, gully erosion, and road failure. J. Geotech. Eng. Construct. Tech. 4(6):199-210,
 
 
Nwachukwu MA, Huan F (2012). In-situ Remediation of Shallow Aquifer. Pollut. J. Hydrol. Eng. Editorial, 1:1.
 
 
Nwachukwu MA, Ohuawunwa C, Nwachukwu I, Nnorom U (2012). Sustainable water supply from boreholes in neighborhood communities besieged by off-campus students. Int. J. Water Res. Environ. Eng. 4(11):352-362.
 
Nwachukwu MA, Huan F, Ophori D (2010). Groundwater model and particle track analysis, for water quality monitoring and pollution assess around contaminated sites. J. Spatial Hydrol. 10(1).
 
Nwachukwu MA, Feng H, Amadi MI, Umunna FU (2010). The Causes and the Control of Selective Pollution of Shallow Wells by Coliform Bacteria: Imo River Basin Nigeria. Water Qual. Expo. Health 2:75-84.
 
 
Nowack B (2008). Pollution prevention and treatment using nanotechnology. In: Krug H, Nanotechn, Environ Aspects. Weinheim: Wiley-VCH Verlag. 2:1-15.
 
 
Nandakumar T (2012). Aquifer atlas reveals groundwater stress. The Hindu, Today's Paper (October, 12) Otto M, Floyd M, Bajpai S. Nanotechnology for site remediation. Rem. J. 19(1):99-108.
 
 
Plaza G, Ulfig K, Hazen TC, Brigmon RL (2001). Use of Molecular techniques in bioremediation Acta. Microbiol. Pol. 50:205-218.
Pubmed
 
 
Pollock DW (1994). User's guide for MODPATH/MODPATH PLOT, version 3: A particle tracking post processing package for MODFLOW: The U.S. Geological Survey finite-difference groundwater flow model
 
 
Piotrowski MR, Doyle JR, Carraway JW (2006). Integrated bioremediation of soil and groundwater at a superfund site. Rem. J. 2(3):293-309.
Crossref
 
 
Rickerby DG, Morrison M (2007) Nano-technology and the environment: A European perspective. Sci. Technol. Adv. Mater. 8:19-24.
Crossref
 
 
Rao PS, Annable MD, Sillan RK, Dongping D, Hatfield K, Graham WD, Wood LA, Enfield CG (2010). Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Res. 33:2673-2686,
Crossref
 
 
Royal Commission on Environmental Pollution (2008). Novel Materials in the Environment: The Case of Nanotechnology. London: Royal Committee on Environ Pollution.
 
 
Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Maty-jaszewski K., Tilton RD, Lowry GV (2007). Surface modifications enhance nanoiron transport and NAPL target-ing in saturated porous media. Environ. Eng. Sci. 24:45.
Crossref
 
 
Suthersan S, John H, Denice N, Scott P (2010). In situ air sparging remediation engineering design. Ground water Monit. Rem. 30(3):39-44,
 
 
Theron J, Walker JA, Cloete TE (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Crit. Rev. Microbiol. 34:43-69.
Crossref
 
 
Tratnyek PG, Johnson RL (2006). Nanotechnology for environmental cleanup. Nanotoday 1(2):44-48.
Crossref
 
 
Tokunaga TK, Wan JM, Firestone MK, Hazen TC, Olson KR, Herman DJ, Sutton SR, Lanzirotti A (2003). In situ reduction of chromium (VI) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual. 32:1641-1649.
Crossref
 
 
U.S. EPA. (2001). Cost Analysis for Selected Groundwater Cleanup Projects: Pump and Treat Systems and Permeable Reactive Barriers. Washington, DC: Environ Protect Agency 542-R-00-013.
 
 
U.S. EPA (2008b). Nanotechnology for Site Remediation: Fact Sheet. Washington, DC: EPA 542-F-08-009 
 
 
U.S. EPA (1991). "Sampling and analysis plan for a bench-scale bioslurry test of soil from the 9th Ave Dump Superfund site, U.S. Army Engineering Waterways Experiment Station, Vicksburg, Washington, DC.
 
 
UNDP (2006). "Niger Delta Human Development Report." UNDP p. 76. Retrieved 19 June, 2013
 
 
Zhang W-X (2003). Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5:323-332.
Crossref
 
 
Zhang W-X (2005). Frontiers in Nanotechnology: U.S. EPA Millenium Lecture Series. Nanotechnology for Water Purification and Waste Treatment July 18, 2005 Washington D.C.: http://www.epa.gov/ncer/nano/lectures/zhang0705.pdf
 
 
Zhang W-X, Elliott DW (2006). Application of iron nanoparticles for groundwater remediation. Rem. J. 16(2):7-21
Crossref