International Journal of
Water Resources and Environmental Engineering

  • Abbreviation: Int. J. Water Res. Environ. Eng.
  • Language: English
  • ISSN: 2141-6613
  • DOI: 10.5897/IJWREE
  • Start Year: 2009
  • Published Articles: 347

Full Length Research Paper

Modelling dynamics of organic carbon in water hyacinth Eichhornia Crassipes (Mart.) Solms artificial wetlands

Aloyce W. Mayo
  • Aloyce W. Mayo
  • Department of Water Resources Engineering, University of Dar es Salaam, Tanzania.
  • Google Scholar


  •  Received: 14 December 2013
  •  Accepted: 10 April 2014
  •  Published: 30 April 2014

References

Barnes D, Bliss PJ, Gould BW, Valentine HR (1981). Water and Wastewater Engineering Systems. Pitman Books Limited London.
 
Barrie A (2002). Modelling COD removal in water hyacinths constructed wetland. MSc Dissertation, Department Water Resources Engineering, University of Dar es Salaam, Tanzania.
 
 
Bigambo T, Mayo AW (2005). Nitrogen transformation in horizontal subsurface flow constructed wetlands II: Effect of biofilm. J. Phys. Chem. Earth 30:668-672.
Crossref
 
 
Canale RP (1976). Modelling biochemical processes in aquatic ecosystems. Ann Arbor Science Pub. Co, Ann Arbor, Michigan.
 
 
Ferrara RA, Hermann DPF (1980). Dynamic Nutrient Cycle Model for Waste Stabilization Ponds. J. Environ. Eng. Div. Am. Soc. Civ. Eng. 106(1):37-55.
 
 
Foree EG, Jewell WJ (1970). The extent of nitrogen and phosphorus regeneration from decomposing algae. In: Advances in Water Pollution Research. Proceedings of the 5th International Conference on Water Research. Pergamon Press Ltd., London. New Zealand J. Mar. Freshw. Res. 14(2):121-128.
 
 
Fritz JJ, Middleton AC, Meredith DD (1979). Dynamic Process Modelling of Wastewater Stabilization Ponds. J. Water Pollut. Control Fed. 51(11):2724-2742.
 
 
Gersberg RM, Elkins SR, Lyons A, Godman CR (1985). Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res. 20:363-368.
Crossref
 
 
Kalibbala M, Mayo AW, Asaeda T, Shilla DA (2008). Modelling faecal streptococci mortality in constructed wetlands implanted with Eichhornia crassipes. Wetland Ecol. Manage. 16:499-510.
Crossref
 
 
Khatiwada NR, Polprasert C (1999). Kinetics of fecal coliform removal in constructed wetlands. Water Sci. Technol. 40(3):109-116.
Crossref
 
 
Kim Y, Kim WJ (2000). Roles of water hyacinth and their roots for reducing algal concentration in the effluent for waste stabilization ponds. Water Res. 34(13):3285-3294.
Crossref
 
 
Knight LR, Clarke AR, Bastian KR (2000). Treatment Wetlands as Habitat for Wildlife and Humans. 7th International Conference on Wetland Systems for Water Pollut. Control (1):37.
 
 
Logan BE, Hilbert TAA, Anold RG (1993). Removal of bacteria in laboratory filters: Models and experiments. Water Res. 27(6):955-962.
Crossref
 
 
Mashauri DA, Kayombo S (2002). Application of the two Coupled Models for Water Quality Management: Facultative pond cum Constructed Wetland Models. J. Phys. Chem. Earth 27:773-781.
Crossref
 
 
Mayo AW (1989). Effect of the pond depth on bacteria mortality rate, J. Environ. Eng. Div. Am. Soc. Civ. Eng. 115(5):964-977.
Crossref
 
 
Mayo AW, Muraza M, Norbert J (2013). The Role of Mara River Basin Wetland in Reduction of Nitrogen Load to Lake Victoria. Int. J. Water Resour. Environ. Eng. 5(12):659-669.
 
 
Mayo AW, Bigambo T (2005). Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development. J. Phys. Chem. Earth 30:658-667.
Crossref
 
 
Mayo AW, Kalibbala M (2007). Modelling faecal coliform mortality in water hyacinths ponds. J. Phys. Chem. Earth 32:1212-1220.
Crossref
 
 
Metcalf and Eddy Inc. (1995). Wastewater Engineering: Treatment, Disposal and Reuse. 3rd McGraw-Hill Ltd. New Delhi, pp. 82-1204.
 
 
Mugasha AL (1995). A study of the potential use of water hyacinth, Eichhornia crassipes (Mart.) Solms., in the control of chromium and lead pollution in fresh waters. MSc. Thesis, University of Dar es Salaam.
 
Muyodi FJ (2000). Microbiological analysis of the waters of Lake Victoria in relation to the invasion of the water hyacinth Eichhornia crassipes (Mart.) Solms.: A case study of the lakeshores of Mwanza Municipality. Ph.D Thesis, University of Dar es Salaam.
 
Nakibuule J (2013). The transformation and removal of nitrogen in horizontal sub-surface flow constructed wetlands. Final Year Project, Department of Water Resources Engineering, University of Dar es Salaam.
 
 
Nash JE, Sutcliffe JV (1970). River flow forecasting through conceptual models. J. Hydrol., 10:282-290.
Crossref
 
 
Okabe S, Hirata K, Watanabe Y (1995). Dynamic changes in spatial microbial distribution in mixed population biofilm, experimental and model simulation. Water Sci. Technol. 32(8):67-74.
Crossref
 
 
Okurut D (2013). Biofilm Effects on Nitrogen Transformation and Removal in Subsurface Flow Constructed Wetlands planted with Typha Domingensis. MSc Dissertation, Department of Water Resources Engineering, University of Dar es Salaam.
 
 
O'Melia CR (1985). Particles, pretreatment and performance in water filtration. J. Environ. Eng. Div. Am. Soc. Civ. Eng. 116(6):874-905.
Crossref
 
 
Polprasert C, Agarwalla BK (1994). A Facultative Pond Incorporating Biofilm activity. Water Environ. Res. 66(5):725-732.
 
 
Polprasert C, Khatiwada NR (1997). Role of Biofilm Activity in Water Hyacinths Pond Design and Operation. Proceedings of Asian Water Quality 97, 6th IAWQ Asian-Pacific Regional Conference, Int. Association on Water Quality and Korean SOC of Water Quality. Seoul, Korea.
 
 
Reddy KR (1985). Nutrient transformations in aquatic macrophyte filters used for water purification. Purification Water Reuse 111, American Water Works Association, Denver, Colorado, pp. 660-678.
 
 
Reed SC, Crites RW, Middlebrooks EJ (1995). Natural systems for waste Management and Treatment. McGraw-Hill Book Co., New York, NY, pp. 225-262.
 
 
Rittmann BE, McCarty PL (1980). Evaluation of Steady State Biofilm Kinetics. Biotechnol. Bioeng. 22:2343-2359.
Crossref
 
 
Senzia MA (2003). Modelling of nitrogen transformation and removal in subsurface flow constructed wetlands during treatment of domestic wastewater. PhD Thesis, Department Water Resources Engineering, University of Dar es Salaam, Tanzania.
 
 
Senzia AM, Mashauri DA, Mayo AW (2004). Modelling Nitrogen Transformation in Horizontal Subsurface flow Constructed Wetlands Planted with Phragmites mauritianus. J. Civ. Eng. Res. Pract. 1(2):1-15.
 
 
Sooknar R (2000). A review of the mechanisms of pollutant removal in water hyacinth systems. Sci. Technol. Res. J. Univ. Mauritius, Reduit, Mauritius 6:50-56.
 
 
Standard Methods for the Examination of Water and Wastewater (2012). American Public Health Association, American Water Works Associations, Water Pollution Control Federal - 22nd Edition, Washington, DC.
 
 
Stowell R, Ludwig R, Colt J, Tchobanoglous T (1981). Concepts in aquatic treatment design. J. Environ. Eng. Div. Am. Soc. Civ. Eng. 112:885-894.
 
 
U.S Environmental Protection Agency (1988). Design Manual. Constructed Wetlands and Aquatic plant Systems for Municipal Waste Treatment. EPA/625/1-88/002, Cincinnati, OH 45268, pp. 2-53.
 
 
Vymazal J (2010). Constructed wetlands for wastewater treatment. Water 2:503-549.
Crossref
 
 
Water 21 (2000). Constructed wetlands: A global technology. Magazines of International Water Association, June, pp. 57-58.
 
 
Weast RC (1981). Handbook of Chemistry and Physics 61st Ed. CRC Press, Boca Raton, Florida.
 
 
Williamson KJ, McCarty PL (1976). A Model of Substrate Utilization by Bacteria Films. J. Water Pollut. Control Fed. 48(1):9-24.
Pubmed
 
 
Yi Q, Hur C, Kim Y (2009). Modelling nitrogen removal in water hyacinth ponds receiving effluent from waste stabilization ponds. Ecol. Eng. 35(1):75-84.
Crossref