Full Length Research Paper
References
Chou JS, Chiu CK, Farfoura M, Al Taharwa I (2011). Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. J. Comp. Civil Eng. 25(3):242-253. |
|
Rivva LE (2008). Concreto de alta Resistencia. Fondo Editorial Instituto Construcción y Gerencia. Lima Perú. |
|
Nataraja MC, Jayaram MA, Ravikumar CN (2006). Kohonen's feature maps for fly ash categorization. Int. J. Neural Syst. 16(06):457-466. |
|
Moromi NI, Torre CA, Acu-a PL, García FF, Espinoza HP (2013). Self Organizing Maps estudio concreto alto rendimiento. |
|
Yeh IC (1998). Modeling of strength of highperformance concrete using artificial neural networks. Cem. Concr. Compos. 28(12):1797-1808. |
|
Yeh IC (2007). Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29:474-480. |
|
Cal Y (1995). Soil classification by neural network. Adv. Eng. Softw. 22(2):95-97. |
|
ASTM C 39 C 39 M (2001). The American Society for Testing Materials, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken PA. USA. |
|
ASTM C 192 C 192 M (2000) The American Society for Testing Materials Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken PA. USA. |
|
Levenberg K (1944). A Method for the Solution of Certain Problems in Least Squares. Quart. Appl. Math. 2:164-168. |
|
Marquardt D (1963). An Algorithm for Least- Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 11(2):431-441. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0