Journal of
Chemical Engineering and Materials Science

  • Abbreviation: J. Chem. Eng. Mater. Sci.
  • Language: English
  • ISSN: 2141-6605
  • DOI: 10.5897/JCEMS
  • Start Year: 2010
  • Published Articles: 97

Full Length Research Paper

Cycle numbers to failure for magnesium and its alloys in human body fluid

Alijani S.
  • Alijani S.
  • Department of Art and Architecture, University of Guilan, Rasht, Guilan, Iran.
  • Google Scholar
Anvari A.
  • Anvari A.
  • Department of Mechanical and Aerospace Engineering, University of Missouri-Columbia, Columbia, Missouri, U.S.A.
  • Google Scholar


  •  Received: 18 February 2018
  •  Accepted: 19 March 2018
  •  Published: 31 March 2018

References

Antunes RA, Oliveira MCL (2012). Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation. Acta Biomaterialia 8:937-962.
Crossref

 

Anvari A (2014). Fatigue life prediction of unidirectional carbon fiber/epoxy composite in Earth orbit. Int. J. Appl. Math. Mech. 10(5):58-85.

 
 

Anvari A (2017a). Crack growth as a function of temperature variation in carbon fiber/epoxy. J. Chem. Eng. Mater. Sci. 8(3):17-30.
Crossref

 
 

Anvari A (2017b). Failure of Nickel-based super alloy (ME3) in aerospace gas turbine engines. J. Chem. Eng. Mat. Sci. 8(6):46-65.
Crossref

 
 

Anvari A (2017c). Thermal fatigue life of carbon nanotube wire and unidirectional carbon fiber/epoxy composite (UCFEC) in earth orbit. J. Chem. Eng. Mater. Sci. 8(8):101-111.
Crossref

 
 

Anvari A (2017d). Fatigue life prediction of unidirectional carbon fiber/epoxy composite on Mars. J. Chem. Eng. Mater. Sci. 8(8):74-100.
Crossref

 
 

Auricchio F, Constantinescu A, Conti M, Scalet G (2016). Fatigue of Metallic Stents: From Clinical Evidence to Computational Analysis. Ann. Biomed. Eng. 44(2):287-301.
Crossref

 
 

Bian D, Zhou W, Liu Y, Li N, Zheng Y, Sun Z (2016). Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Acta Biomaterialia 41:351-360.
Crossref

 
 

Dewidar M (2012). Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications. Int. J. Mech. Mechatron. Eng. 12(1):10-24.

 
 

Dou XQ, Wang H, Zhang J, Wang F, Xu GL, Xu CC, Xu HH, Xiang SS, Fu J, Song HF (2018). Aptamer-drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int. J. Nanomed. 13:733-762.
Crossref

 
 

Findik F (2017). Titanium Based Biomaterials. Eng. Biosci. 7(3):1-3.
Crossref

 
 

Hosseini S (2012). Fatigue of Ti-6Al-4V. Biomedical Engineering-Technical Applications in Medicine, Chapter 3:75-92.
Crossref

 
 

Karacali O (2015). Material fatigue research for Zirconia ceramic dental implant: a comparative laboratory and simulation study in dentistry. Acta Physica Polonica A 127(4):1195-1198.
Crossref

 
 

Lopes CSD, Donato MT, Ramgi P (2016). Comparative Corrosion Behavior of Titanium Alloys (Ti-15Mo and Ti-6Al-4V) for Dental Implants Applications: A review. Corros. Prot. Mater. 35(2):5-14.

 
 

Major S, Kocour V, Bryscejn J (2017). Fatigue life prediction of Titanium implants with Titanium Dioxide Surface. Int. J. Mechanics 11:288-298.

 
 

Manivasagam G, Dhinasekaran D, Rajamanickam A (2010). Biomedical Implants: Corrosion and its Prevention-A Review. Recent Patents on Corrosion Science 2:40-54.
Crossref

 
 

Peron M, Torgersen J, Berto F (2017). Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure. Metals 7:1-41.
Crossref

 
 

Raman RKS, Harandi SE (2017). Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges. Materials 10:1-11.
Crossref

 
 

Saleh TA (2018). Nanotechnology in oil and gas industries: principles and applications (Topics in mining, metallurgy and materials engineering). 1st Edition.
Crossref

 
 

Saleh TA, Gupta VK (2016). Nanomaterials and polymer membranes: synthesis, characterization, and applications. 1st Edition.

 
 

Santos GAD (2017). The importance of metallic materials as biomaterials. Adv. Tissue Eng. Regenerative Med. 3(1):1-3.
Crossref

 
 

Sedmak A, Rakin M (2006). Biomaterials-Joints and Problems of Contact Interfaces. FME Transactions 34(2):81-86.

 
 

Wang SP, Xu J (2017). TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Materials Science and Engineering C. 73:80-89.
Crossref

 
 

Wu GQ, Shi CL, Sha W, Sha AX, Jiang HR (2013). Effect of microstructure on the fatigue properties of Ti-6Al-4V Titanium alloys. Materials and Design. Doi: http://dx.doi.org/10.1016/j.matdes.2012.10.059.
Crossref

 
 

Yazdani SY, Hajisafari M, Bidaki AZ (2017). Fatigue and corrosion fatigue of Ti-6Al-4V implant grade Titanium alloy in ringer solution. J. Adv. Mater. Processing 5(3):12-22.