Journal of
Chemical Engineering and Materials Science

  • Abbreviation: J. Chem. Eng. Mater. Sci.
  • Language: English
  • ISSN: 2141-6605
  • DOI: 10.5897/JCEMS
  • Start Year: 2010
  • Published Articles: 97

Full Length Research Paper

Crack growth as a function of temperature variation in carbon fiber/epoxy

Ali Anvari
  • Ali Anvari
  • Mechanical and Aerospace Engineering Department, University of Missouri-Columbia, USA.
  • Google Scholar


  •  Received: 28 December 2016
  •  Accepted: 02 February 2017
  •  Published: 30 June 2017

References

Barbero EJ and Cosso FA (2014). Determination of Material Parameters for Discrete Damage Mechanics Analysis of Carbon-Epoxy Laminates. Composites: Part B 56:638-646.
Crossref

 

Chauhan P, Osternman M, Pecht M (2012). Canary Approach For Monitoring BGA Interconnect Reliability Under Temperature Cycling. CALCE Electronic Products and Systems Center, University of Maryland, College Park, MD 20742.

 

Huang X (2009). Fabrication and Properties of Carbon Fibers. Materials 2:2369-2403.
Crossref

 

Jo HS, Lee GW (2014). Thermal Expansion Coefficient and Young's Modulus of Silica- Reinforced Epoxy Composite. Int. J. Chem. Mol. Nucl. Mater. Metallurgical Eng. 8(11):1188-1191.

 

Karadeniz ZH (2005). A numerical study on the thermal expansion coefficients of fiber reinforced composite materials. Master of Science Thesis in mechanical engineering, Energy Program, Dokuz Eylul University. 

 

Meszaros L, Turcsan T (2014). Development and mechanical properties of carbon fibre reinforced EP/VE hybrid composite systems. Periodica Polytechnica, Mec. Eng. 58(2):127-133.

 

Misak HE, Sabelkin V, Mall S, Kladitis PE (2013). Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon nanotube wire. Carbon 57:42-49.
Crossref

 

Park a,* SY, Choi b HS, Choi a WJ, and Kwon a H 2012). Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications. Composites: Part B 43, pp. 726-738.

 

Ramanujam N, Vaddadi P, Nakamura T, Singh RP (2008). Interlaminar fatigue crack growth of cross-ply composites under thermal cycles. Composite Structures 85:175-187.
Crossref

 

Ray BC and Rathore D (2014). Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela-769008, India.
Crossref

 

Savkin A, Andronik A, Abhilash R (2015). Crack Closure Detection Using Photometrical Analysis. Periodica Polytechnica, Mech. Eng. 59(3):114-119.

 

Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, Minus ML (2013). Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing Structure-Performance Relationship. Materials 6:2543-2577.
Crossref

 

Voicu R (2012). Structural Characterization and Mechanical Behaviour of Carbon Fiber/epoxy Composite for Aeronautical Field. Materiale Plastice 49(1):34-40.

 

Wilkerson J, Daniel A, and Daniel D (2007). Fatigue Characterization of Functionalized Carbon Nanotube Reinforced Carbon Fiber Composites. Texas A & M University, college station, Texas 77844-3012.