Full Length Research Paper
References
Almirón J, Roudet F, Duquesne S (2019). Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. Journal of Fire Sciences 37(4-6):434-451. |
|
Ameri F, Shoaei P, Bahrami N, Vaezi M, Ozbakkaloglu T (2019). Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Construction and Building Materials 222:796-813. |
|
Ayswarya EP, Francis KV, Renju VS, Thachil ET (2012). Rice husk ash-A valuable reinforcement for high density polyethylene. Materials and Design 41:1-7. |
|
Babel S, Kurniawan TA (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of hazardous materials 97(1-3):219-243. |
|
Bakar RA, Yahya R, Gan SN (2016). Production of high purity amorphous silica from rice husk. Procedia Chemistry 19:189-195. |
|
Chandrasekhar SA, Satyanarayana KG, Pramada PN, Raghavan P, Gupta TN (2003). Review processing, properties and applications of reactive silica from rice husk-An overview. Journal of Materials Science 38(15):3159-3168. |
|
Chaudhary DS, Jollands MC, Cser F (2004). Recycling Rice Hull: A Filler Material for Polymer Composites. Advances in Polymer Technology 23(2):147-155. |
|
Chuah TG, Jumasiah A, Azni I, Katayon S, Choong ST (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 175(3):305-316. |
|
Deshmukh P, Bhatt J, Peshwe D, Pathak S (2012). Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash. Transactions of the Indian Institute of Metals 65(1):63-70. |
|
Genieva S, Turmanova S, Dimitrova A, Vlaev L (2008). Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry 93(2):387-396. |
|
He D, Ikeda-Ohno A, Boland, DD, Waite TD (2013a). Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. Environmental Science and Technology 47(10):5276-5284. |
|
He J, Jie Y, Zhang J, Yu Y, Zhang G (2013b). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites 37:108-118. |
|
Ikhlaq A, Munir HM, Khan A, Javed F, Joya KS (2019). Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater. Ozone: Science and Engineering 41(3):250-260. |
|
Kamau GN, Mbindyo JK, Githinji ZP, Tuts RJ, Kinyua AM (1993). Rice Husk Ash and its Application as a Cement Replacement Material in Kenya. International Journal of BioChemiPhysics 2:138-143. |
|
Kang SH, Hong SG, Moon J (2019). The use of rice husk ash as reactive filler in ultra-high performance concrete. Cement and Concrete Research 115:389-400. |
|
Kenechi NO, Linus C, Kayode A (2016). Utilization of Rice Husk as Reinforcement in Plastic Composites Fabrication. American Journal of Materials Synthesis and Processing 1(3):1-5. |
|
Lawagon CP, Amon RE (2019). Magnetic rice husk ash 'cleanser' as efficient methylene blue adsorbent. Environmental Engineering Research 25(5):685-692. |
|
Leong TL (2015). Effects of Rice Husk Ash (RHS) Produced from Different Temperatures on the Performances of Concrete (Doctoral dissertation, UTAR). |
|
Liou TH (2004). Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon 42(4):785-794. |
|
Maingi F, Mwihaki Ng'ang'a M, Mbuvi HM, Mwangi H (2019). Clay-Rice Husk Ash based Geopolymers for Remediation of Pb (II) and Cd (II) from Wastewater. Egerton Journal of Science and Technology 17(1-139):15-28. |
|
Mohamad FZC (2007). Performance of Recycled High Density Polyethylene (HDPE) (Doctoral dissertation, Universiti Teknologi Malaysia). |
|
Nair DG, Fraaij A, Klaassen AA, Kentgens AP (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research 38(6):861-869. |
|
Ong HR, Iskandar WME, Khan MMR (2019). Rice Husk Nanosilica Preparation and Its Potential Application as Nanofluids. In Silver Nanoparticles-Health and Safety. IntechOpen |
|
Prachayawarakorn J, Yaembunying N (2005). Effect of recycling on properties of rice husk-filled-polypropylene. Journal of Science and Technology 27(2):343-352. |
|
Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M (2012). Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). International Nano Letters 2(1):29. |
|
Ramezanianpour AA, Mahdikhani M, Ahmadibeni G (2009). The effect of rice husk ash on mechanical properties and durability of sustainable concretes. International Journal of Civil and Environmental Engineering 10:3. |
|
Sekifuji R, Tateda M (2019). Study of the feasibility of a rice husk recycling scheme in Japan to produce silica fertilizer for rice plants. Sustainable Environment Research 29(1):11. |
|
Shanks RA, Hodzic A, Wong S (2004). Thermoplastic Biopolyester Natural Rubber Composite. Journal of Applied Polymer Science 91:2114-2121. |
|
Shukla SK (2020). Rice Husk Derived Adsorbents for Water Purification. In Green Materials for Wastewater Treatment (pp. 131-148). Springer, Cham. |
|
Singh R, Srivastava P, Singh P, Sharma AK, Singh H, Raghubanshi AS (2019). Impact of rice-husk ash on the soil biophysical and agronomic parameters of wheat crop under a dry tropical ecosystem. Ecological Indicators 105:505-515. |
|
Sonat C, Unluer C (2019). 153001. Development of magnesium-silicate-hydrate (MSH) cement with rice husk ash. Journal of Cleaner Production 211:787-803. |
|
Ugheoke IB, Mamat O (2012). A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo International Journal of Science and Technology 6:430e448. |
|
Venkatanarayanan HK, Rangaraju PR (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites 55:348-363. |
|
Xue B, Wang X, Sui J, Xu D, Zhu Y, Liu X (2019). A facile ball milling method to produce sustainable pyrolytic rice husk bio-filler for reinforcement of rubber mechanical property. Industrial Crops and Products 141:111791. |
|
Zamani C, Mohajerani SS, Ataie A (2019). Synthesis of Three-Dimensional Mesoporous Silicon from Rice Husk via SHS Route. Journal of Ultrafine Grained and Nanostructured Materials 52(2):149-153. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0