Journal of
Dryland Agriculture

OFFICIAL PUBLICATION OF THE CENTRE FOR DRYLAND AGRICULTURE, BAYERO UNIVERSITY, KANO
  • Abbreviation: J. Dryland Agric.
  • Language: English
  • ISSN: 2476-8650
  • DOI: 10.5897/JODA
  • Start Year: 2015
  • Published Articles: 48

Full Length Research Paper

Effects of arbuscular mycorrhizal fungi on growth and phosphorus uptake of maize (Zea mays L.) at different levels of soil phosphorus and soil moisture

Bouzeriba T.B Alsunuse
  • Bouzeriba T.B Alsunuse
  • Department of Ecosystem Science and Management, College of Agriculture and Natural Resources, University of Wyoming, 1000 E University Avenue, Laramie, WY, USA
  • Google Scholar
Mehjin A.M Al-Ani
  • Mehjin A.M Al-Ani
  • Environmental Technology Department, Environment Faculty, Mosul University, Mosul, Iraq.
  • Google Scholar
Mikaeel Y. Faituri
  • Mikaeel Y. Faituri
  • Soil and Water Department, Agricultural College, Omar Al-Mukhtar University, Albida, Libya.
  • Google Scholar
Dennis S. Ashilenje
  • Dennis S. Ashilenje
  • Department of Plant Sciences, College of Agriculture and Natural Resources University of Wyoming, 1000 E University Avenue, Laramie, WY, USA.
  • Google Scholar
Ahmed A. Alawami
  • Ahmed A. Alawami
  • Soil and Water Department, Agricultural College, Omar Al-Mukhtar University, Albida, Libya.
  • Google Scholar
Peter D. Stahl
  • Peter D. Stahl
  • Department of Ecosystem Science and Management, College of Agriculture and Natural Resources, University of Wyoming, 1000 E University Avenue, Laramie, WY, USA
  • Google Scholar


  •  Received: 25 November 2020
  •  Accepted: 27 April 2021
  •  Published: 31 May 2021

References

Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014). Hormonal and metabolic regulation source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnology Advances 32(1):12-30.
Crossref

 

Al-Karaki G, McMicheal B, Zak J (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14(4):263-269.
Crossref

 

Al-Karaki GN, Al-Raddad A (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83-88.
Crossref

 

Al-Karaki GN, Clark RB (1998). Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition 21(2):263-276
Crossref

 

Allen MF (2007). Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. 
Crossref

 

Allen MF, Boosalis MG (1982). Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytologist 93:67-76.
Crossref

 

Asmah AE (1995). Effect of phosphorus source and rate of application on VAM fungal infection and growth of maize (Zea mays L.). Mycorrhiza 5(3):223-228.
Crossref

 

Auge' RM, Duan X, Ebel RC, Stodola AJW (1994). Nonhydraulic signaling of soil drying in mycorrhizal maize. Planta 193:74-82.
Crossref

 

Auge' RM, Stodola AJW , Tims JE, Saxton AM (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil 230:87-97
Crossref

 

Bagheri V, Shamshiri MH, . Shirani H, Roosta HR (2012). Nutrient Uptake and Distribution in Mycorrhizal Pistachio Seedlings under Drought Stress. Journal of Agricultural Science and Technology 14:1591-1604.

 

Balzergue C, Chabauud M, Barker DG, Bécard G, Rochange SF (2013). High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science 
Crossref

 

Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. Journal of Experimental Botany 62(3):1049-1060.
Crossref

 

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zang L (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science 10. 
Crossref

 

Beltrano J, Ranco MG (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology 20(1):29-37.
Crossref

 

Bi LY, Li XL, Christie P (2003) . Influence of Early Stages of Arbuscular Mycorrhiza on Uptake of Zinc and Phosphorous by Red Clover from a Lowphosphorous Soil Amended with Zinc and Phosphorous. Chemosphere 50(6):831-837.
Crossref

 

Birhane E, Sterck F, Fetene M, Bongers F, Kuyper T (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4):895-904.
Crossref

 

Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany 55(407):2331-2341.
Crossref

 

Bucher M (2007). Functional biology of plant phosphate uptake at root and mycorrhizae interfaces. New Phytologist 173:11-26.
Crossref

 

Calvo-Polanco M, Sánchez-Castr I, Cantos M, Luis García J, Azcón R, Ruiz-Lozano JM, Beuzón C R, Aroca R (2016). Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant, Cell and Environment 39:2498-2514.
Crossref

 

Campos P, Borie F, Cornejo P, López-Ráez JA, López-García A, Seguel A (2018). Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping?. Frontiers in Plant Science 9:752. 
Crossref

 

Cavallazzi JRP, Filho OK, Stürmer SL, Rygiewicz PT, Mendonça MM (2007). Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell, Tissue and Organ Culture 90:117-129.
Crossref

 

Chaves MM, Oliveira MM (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55(407):2365-2384.
Crossref

 

Daniels BA, Trappe JM (1980). Factors affecting spore germination of the vesicular arbuscular mycorrhizal fungus, Glomus Epigaeus. Mycologia 72:457-471.
Crossref

 

Gee GW, Bauder JW (1986). Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis, Part I, 2nd ed., Agron. Monographs, ASA and SSSA, Madison, WI 9:383-411.
Crossref

 

Grant C, Bittman S, Montreal1 M, Plenchette C, Morel C (2004). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science 85(1). 
Crossref

 

Habibzadeh Y, Pirzad A, Zardashti MR, Jalilian J, Eini O (2013). Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit tress in mung bean. Agronomy Journal and Enviromental Quality 105(1):79-84.
Crossref

 

Hesse PR (1971). Textbook of Soil Chemical Analysis. John Murray, London.

 

Huang RS, Smith WK, Yost RS (1985). Influence of vesicular arbuscular mycorrhiza on growth, water relations and leaf orientation in Leucaena leucocphala (Lam.) de Wit. New Phytologist 99(2):229-243.
Crossref

 

Kayama M, Yamanaka T (2014). Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil. Trees 28:569-583.
Crossref

 

Koch KE, Johnson CR (1984). Photosynthate partitioning in split root citrus seedlings with mycorrhizal and non-mycorrhizal root systems. Plant Physiology 75(1):26-30.
Crossref

 

Koide RT (1991). Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist 117(3):365-386.
Crossref

 

Koide RT, Li M (1990). On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytologist 114(1):59-65.
Crossref

 

Lekberg Y, Koide RT (2005). Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist 168(1):189-204.
Crossref

 

Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zanf T, Sun W (2019). Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. Frontier in Plant Science 10:1-12.
Crossref

 

Liu W, Zheng CY, Fu ZF, Gai JP, Zhang JL, Christie P, Li XL (2014). Facilitation of seedling growth and nutrient uptake by indigenous arbuscular mycorrhizal fungi in intensive agroecosystems. Biology and Fertility of Soils 50:381-394.
Crossref

 

Mai W, Xue X, Feng G, Tian C (2018). Simultaneously maximizing root/ mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management. BMC Plant Biology 18:334.
Crossref

 

Manjunath A, Habte M (1991). Relationship between mycorrhizal dependency and rate variables associated with phosphorus uptake, utilization and growth. Communications Soil Science and Plant Analysis 22(13-14):1423-1437.
Crossref

 

Marschner H, Dell B (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89-102.
Crossref

 

Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castafeda J, Davies FT (2006). Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought. Mycorrhiza 16(4):261-267.
Crossref

 

Michelsen A, Rosendahl S (1990). The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant and Soil 124:7-13.
Crossref

 

Moradtalab N, Roghieh H, Nasser A, Tobias EH, Günter N (2019). Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9(1)41.
Crossref

 

Mumtaz MZ, Aslam M, Jamil M, Ahmad M (2014). Effect of different phosphorus levels on growth and yield of wheat under water stress conditions. Journal of Environment and Earth Science 4(19):23-30.

 

Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A (2010). Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Medica 76:393-398.
Crossref

 

Nelsen CE, Safir GR (1982). Increased drought tolerance of mycorrhizal onion plants caused by improved P nutrition. Planta 154(5):407-413.
Crossref

 

Olsen SR, Sommers LE (1982). Phosphorus, P, In: A. L. et al.., eds. Methods of soil analysis. Chemical and biological methods. Part 2, 2 ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 403-430.
Crossref

 

Ortas I (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125:35-48.
Crossref

 

Osonubi O (1994). Comparative effects of vesicular-arbuscular mycorrhizal inoculation and phosphorus fertilization on growth and phosphorus uptake of maize (Zea mays L.) and sorghum (Sorghum bicolor L.) plants under drought-stressed conditions. Biology and Fertility of Soils 18:55-59.
Crossref

 

Oyetunji OJ, Ekanayake IJ, Osonubi O (2007). Chlorophyll Fluorescence Analysis for Assessing Water Deficit and Arbuscular Mycorrhizal Fungi (AMF) Inoculation in Cassava (Manihot esculenta Crantz). Advances in Biological Research 1(3-4):108-117.

 

Phillips JM, Hayman DS (1970). Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1):158-161.
Crossref

 

Ping XU, Lin-Zhou L, Xiao-Ying D, Jing XU, Pei-Kun J, Ren-Fang S (2014). Response of Soil Phosphorus Required for Maximum Growth of Asparagus o?cinalis L. to Inoculation of Arbuscular Mycorrhizal Fungi. Pedosphere 24(6):776-782.
Crossref

 

Powell CL, Bagyaraj DJ (1984). VA Mycorrhiza. In. Menge JA (Eds), Inoculum production Florida, BR:CRC Press, Inc. pp.187-199.

 

R Core Team R: (2018). A language and environment for statistical computing. R Foundation for Statistical Consulting. Vienna.

View

 

Rajan SK, Reddy BJD, Bagyaraj DJ (2000). Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. Forest Ecology and Management 126(2):91-95.
Crossref

 

Rubio R, Borie F, Schaalchli C, Castillo C, Azcon R (2003). Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology 23(3):245-255.
Crossref

 

Ruiz-Lozano JM, Azcon R (1995). Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum 95(3):472-478.
Crossref

 

Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R (2015). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell and Environment 39(2):441-452.
Crossref

 

Sadhana B (2014). Arbuscular mycorrhizal fungi (AMF) as a biofertilizers-a review. Intnational Journal of Current Microbiology and Applied Science 3(4):384-400.

 

Schubert A, Hayman DS (1986). Plant growth responses to Vesicular-arbuscular mycorrhiza XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytologist 130:79-90.
Crossref

 

Smith SE, Read DJ (2008). Mycorrhizal Symbiosis, (Ed3), Academic Press, New York. London, Burlinghton, San Diego.

 

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus (P) nutrition: interactions between pathways of P uptake in arbuscular mycorrhizal (AM) roots have important implications for understanding and manipulating plant P acquisition. Plant Physiology 156:1050-1057.
Crossref

 

Smith SE, Smith FA, Jakobsen I (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133:16-20.
Crossref

 

Stahl PD, Frost SM, Williams S E, Schuman G E (1998). Arbuscular Mycorrhizae and Water Stress Tolerance of Wyoming Big Sagebrush Seedlings. Soil Science Society of America 62(5):1309-1313.
Crossref

 

Stahl PD, Smith WK (1984). Effects of different geographic isolates of Glomus on the water relations of Agropyron Smithii. Mycologia 76(2):261-267.
Crossref

 

Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1997). Effects of mycorrhizas on leaf water potential, sugar and P contents during and after recovery of maize. Canadian Journal Botany 75(9):1582-1591.
Crossref

 

Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia horticulturae, 107(3):245-253.
Crossref

 

Walker C (1999). Methods for culturing and isolating arbuscular mycorrhizal fungi. Mycorrhiza News 11(2).

 

Walkley AJ, Black CA (1934). An extimation of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1):29-38.
Crossref

 

Walsh LM, Beaton JD (1973). Soil testing and plant analysis (Eds.). Soil Science Society of America, Madison,WI P 512.

 

Whitmore AP, Whalley WR (2009). Physical effects of soil drying on roots and crop growth. Journal of Experimental Botany 6(10):2845-2857.
Crossref

 

Wu QS, Zou YN (2009b). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philippine Agricultural Scientist 92:33-38.

 

Xu L, Li T, Wu Z, Feng H, Yu M, Zang X, Chen B (2018). Arbuscular mycorrhiza enhances drought olerance of tomato plants byregulating the 14-3-3 genes in the ABA signaling pathway. Applied Soil Ecology 125:213-221.
Crossref

 

Yang H, Zehnder AJB (2002). Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries. World Development 30(8):1413-1430.
Crossref

 

Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Chaum S (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Scientia Horticulturae 198:107-117.
Crossref

 

Zhang F, Zou YN, Wu QS (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae 229:132-136.
Crossref

 

Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology 88:41-49.
Crossref