Journal of
Public Health and Epidemiology

  • Abbreviation: J. Public Health Epidemiol.
  • Language: English
  • ISSN: 2141-2316
  • DOI: 10.5897/JPHE
  • Start Year: 2009
  • Published Articles: 569

Full Length Research Paper

Meteorological factors associated with a high prevalence of leishmaniasis in Nicaragua

Santiago E. Hernandez
  • Santiago E. Hernandez
  • Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida USA.
  • Google Scholar
Jeegan Parikh
  • Jeegan Parikh
  • Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida USA.
  • Google Scholar
Gerardo Blass-Alfaro
  • Gerardo Blass-Alfaro
  • Department of Microbiology and Parasitology, Faculty of Medical Sciences, Universidad Nacional Autónoma de Nicaragua-Managua, Nicaragua.
  • Google Scholar
Marissa Anne Rickloff
  • Marissa Anne Rickloff
  • Epidemiology.College of Public Health, University of South Florida. Tampa, Florida USA.
  • Google Scholar
Benjamin G. Jacob
  • Benjamin G. Jacob
  • Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida USA.
  • Google Scholar


  •  Received: 12 October 2020
  •  Accepted: 25 November 2020
  •  Published: 31 December 2020

References

Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D (2016). A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLOS Neglected Tropical Diseases 10(3)e0004349. 
Crossref

 

Chaves LF, Cohen JM, Pascual M, Wilson ML (2008). Social Exclusion Modifies Climate and Deforestation Impacts on a Vector-Borne Disease. PLOS Neglected Tropical Diseases 2(2) 
Crossref

 

Costa SM, Cordeiro JLP, Rangel EF (2018). Environmental suitability for Lutzomyia (Nyssomyia) whitmani (Diptera: Psychodidae: Phlebotominae) and the occurrence of American cutaneous leishmaniasis in Brazil. Parasites and Vectors, 11. 
Crossref

 

Diniz‐Filho JAF, Bini LM, Hawkins BA (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12(1)53-64.
Crossref

 

Getis A (2008). A History of the Concept of Spatial Autocorrelation: A Geographer's Perspective. Geographical Analysis 40(3):297-309. 
Crossref

 

Gourdji S, Läderach P, Valle AM, Martinez CZ, Lobell DB (2015). Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agricultural and Forest Meteorology 200:270-281. 
Crossref

 

Guernaoui S, Boumezzough A, Laamrani A (2006).Altitudinal structuring of sand flies (Diptera: Psychodidae) in the High-Atlas mountains (Morocco) and its relation to the risk of leishmaniasis transmission. Acta Tropica 97(3):346-351. 
Crossref

 

Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA (2015). Cutaneous and mucocutaneous leishmaniasis: Clinical perspectives. Journal of the American Academy of Dermatology 73(6):897-908; quiz 909-910. 
Crossref

 

Harrison XA (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution Peer J, 2: e616. 
Crossref

 

Hipp JA (2015). Spatial Analysis and Correlates of County-Level Diabetes Prevalence, 2009-2010. Preventing Chronic Disease 12 
Crossref

 

Instituto Nacional de Información de Desarrollo. (2017). Anuario Estadistico 2017 (pp.151-160). 

 

Johnson TR (2012) JM. HILBE (2011). Negative Binomial Regression, second edition. Psychometrika 77(3):611-612.
Crossref

 

Kay C (2011). Rural Poverty Reduction Policies in Honduras, Nicaragua and Bolivia: Lessons from a Comparative Analysis. The European Journal of Development Research 23(2):249-265. 
Crossref

 

Li Y, Zheng C (2019). Associations between Meteorological Factors and Visceral Leishmaniasis Outbreaks in Jiashi County, Xinjiang Uygur Autonomous Region, China, 2005-2015. International Journal of Environmental Research and Public Health 16(10) 
Crossref

 

Ministerio de Salud. Manual de procedimientos para la prevención, control y atención de las leishmaniasis. Managua: Ministerio de Salud; 2019 p. 23-4. Report No.: 132.

 

Mohammadbeigi A, Khazaei S, Heidari H, Asgarian A, Arsangjang S, Saghafipour A, Mohammadsalehi N, Ansari H (2020). An investigation of the effects of environmental and ecologic factors on cutaneous leishmaniasis in the old world: A systematic review study. Reviews on Environmental Health. 
Crossref

 

Mokhtari M, Miri M, Nikoonahad A, Jalilian A, Naserifar R, Ghaffari H R, Kazembeigi F(2016).Cutaneous leishmaniasis prevalence and morbidity based on environmental factors in Ilam, Iran: Spatial analysis and land use regression models. Acta Tropica 163:90-97. 
Crossref

 

Mollalo A, Alimohammadi A, Shirzadi MR, Malek MR (2015). Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran. Zoonoses and Public Health 62(1):18-28. 
Crossref

 

Moo-Llanes D, Ibarra-Cerdeña CN, Rebollar-Téllez EA, Ibáñez-Bernal S, González C, Ramsey JM (2013). Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios. PLOS Neglected Tropical Diseases 7(9) e2421.
Crossref

 

National Aeronautics and Space Administration. (2020). POWER Data Access Viewer. 

 

Okwor I, Uzonna J (2016). Social and Economic Burden of Human Leishmaniasis. American Journal of Tropical Medicine and Hygiene [Internet]. 2016 [cited 2018 Jan 23];94(3):489-93.
Crossref

 

Organization PAH (2018). Leishmaniasis. Epidemiological Report of the Americas, February 2018. 

View

 

Pérez J, Virgen A, Rojas JC, Rebollar-Téllez EA, Alfredo C, Infante F, Ibáñez-Bernal S (2014). Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems. Memórias Do Instituto Oswaldo Cruz 109(1)80-86. 
Crossref

 

Ramezankhani R, Sajjadi N, Nezakati Esmaeilzadeh R, Jozi SA, Shirzadi MR (2018). Climate and environmental factors affecting the incidence of cutaneous leishmaniasis in Isfahan, Iran. Environmental Science and Pollution Research International 25(12):11516-11526. 
Crossref

 

Raymond RW, McHugh CP, Kerr SF (2010). Sand flies of Nicaragua: A checklist and reports of new collections. Memórias Do Instituto Oswaldo Cruz 105(7):889-894. 
Crossref

 

Rodrigues MG, Sousa JDB, Dias ÁLB, Monteiro WM, Sampaio VS (2019).The role of deforestation on American cutaneous leishmaniasis incidence: Spatial-temporal distribution, environmental and socioeconomic factors associated in the Brazilian Amazon. Tropical Medicine and International Health 24(3):348-355. 
Crossref

 

Salah AB, Kamarianakis Y, Chlif S, Alaya NB, Prastacos P(2007). Zoonotic cutaneous leishmaniasis in central Tunisia: Spatio-temporal dynamics. International Journal of Epidemiology 36(5)991-1000. 
Crossref

 

Salud M, (n.d.). Ministerio de salud | Mapa de padecimientos de salud de Nicaragua. 

View

 

Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017).Leishmaniasis: A review. F1000Research 6:750.
Crossref

 

Vivero RJ, Torres-Gutierrez C, Bejarano EE, Peña HC, Estrada LG, Florez F, Muskus CE (2015). Study on natural breeding sites of sand flies (Diptera: Phlebotominae) in areas of Leishmania transmission in Colombia. Parasites and Vectors 8. 
Crossref

 

Warburg A, Montoya‐Lerma J, Jaramillo C, Cruz‐Ruiz AL, Ostrovska K (1991). Leishmaniasis vector potential of Lutzomyia spp. In Colombian coffee plantations. Medical and Veterinary Entomology 5(1):9-16. 
Crossref

 

WHO | World Health Organization (n.d). Neglected Tropical Diseases [Internet] World Health Organization, Geneva (2020)[cited 2018 Oct 16]. 

View

 

World Health Organization. (2010). Control of the leishmaniases. World Health Organization Technical Report Series (949), xii-xiii, 1-186, back cover.

 

Zeledon EB, Kelly NM (2009). Understanding large-scale deforestation in southern Jinotega, Nicaragua from 1978 to 1999 through the examination of changes in land use and land cover. Journal of Environmental Management 90(9):2866-2872. 
Crossref