Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2768

Review

A review on Oat (Avena sativa L.) as a dual-purpose crop

Mushtaq Ahmad
  • Mushtaq Ahmad
  • Division of Genetics and Pant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus, Srinagar -191 121, India
  • Google Scholar
Gul-Zaffar
  • Gul-Zaffar
  • Division of Genetics and Pant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus, Srinagar -191 121, India
  • Google Scholar
Z. A. Dar
  • Z. A. Dar
  • Division of Genetics and Pant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus, Srinagar -191 121, India
  • Google Scholar
Mehfuza Habib
  • Mehfuza Habib
  • Division of Genetics and Pant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus, Srinagar -191 121, India
  • Google Scholar


  •  Accepted: 20 February 2014
  •  Published: 28 February 2014

References

Ahmad M, Zaffar G (2014). Evaluation of oats (Avena sativa L.) genotypes for β-glucan, grain yield and physiological traits. Appl. Biol. Res. 16(1):1-3.
 
Anonymous (2008). Status paper on fodder production in the state of Jammu and Kashmir. Paper presentation 41st RCM (Rabi 2008), SKUAST-K, Shalimar, Srinagar, J&K, India.
 
Anonymous (2009). Digest of Statistics (2009-2010). Directorate of Economics and Statistics, Planning & Development Department, Government of J&K, Srinagar pp. 94-100.
 
Bae IY, Kim SM, Lee S, Lee HG (2010). Effect of enzymatic hydrolysis on cholesterol-lowering activity of oat beta-glucan. N. Biotechnol. 27(1):858. Crossref
 
Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW (1994). Oat β–glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur. J. Clin. Nutr. 48:465-74. Pubmed
 
Contreras F M, Rivera J, Vasquez MA, De la Parte and Velasco M (2000). Diabetes and hypertension patho physiology and therapeutics. J. Hum. Hyper.1:26-31.
Crossref
 
Czerwiński J, Bartnikowska E, Leontowicz H (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J. Nutr. Biochem. 15:622-629. Crossref
 
di Luzio NR, Williams DL, Mcnamee RB, Edwards BF, Kitahama A. (1979). Comparative tumor inhibitory and anti-bacterial activity of soluble and particulate glucana. Int. J. Cancer. 24:773-779. Crossref
 
Dikeman CL, Murphy MR, Fahey GC Jr. (2006). Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J. Nutr. 136(4):913-919. PMid:16549450
 
Dong JL, Cai FL, Shen RL, Liu Y (2011). Hypoglycemic effects and inhibitory effect on intestinal disaccharidases of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chem. 129:1066-1071.
Crossref
 
Drozdowski LA, Reimer RA, Temelli F, Bell RC, Vasanthan T, Thomson ABR (2010). β-Glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats. J. Nutr. Biochem. 21(8):695-701.
Crossref
 

Drozdowski LA, Reimer RA, Temelli F, Bell RC, Vasanthan T, Thomson ABR (2010). β-Glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats. J. Nutr. Biochem. 21(8):695-701. Crossref

 
Esposito F, Arlotti G, Bonifati AM (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 38:1167–1173. Crossref
 
Glore SR, Van Treeck D, Knehans AW, Guild M (1994). Soluble fiber and serum lipids: a literature review. J. Am. Diet Assoc. 94:425-436.
Crossref
 
Govt of India, Planning Commission. (2001).
 
Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung NK, Ross GD (2004). Mechanism by which orally administered β-(1, 3)-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173(2):797-806. PMid:15240666
 
Hooda S, Matte JJ, Vasanthan T, Zijlstra RT (2010). Dietary purified oat β-glucan reduces peak glucose absorption and portalinsulin release in portal-vein catheterized grower pigs. Livest. Sci.
Crossref
 
Huttner EK, Arendt EK (2010). Recent advances in gluten-free baking and the current status of oats, Trends in Food Sci. Technol. 21:303-312.
Crossref
 
Kerckhoffs D, Hornstea G, Mensink R (2003). Cholesterol lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is in corporated into bread and cookies. Am. J. Clin. Nutr. 78:221-227. PMid:12885701
 
Lasztity R (1999). General characterization of the chemical composition of cereal grains. The structure of the cereal grain. In cereal chemistry, Akademiai Kiado. Budapest, pp. 13-24.
 
Ludwig DS (2000). Dietary glycemic index and obesity. J. Nutr. 130:280S-283S. Pubmed
 
Lush JL (1945). Animal Breeding Plans.3rd edition. Iowa State University Press, Ames Iowa, pp.125-138.
 
Malkki Y, Virtanen E (2013). Gastrointestinal effects of oat bran and oat gum: Areview. Lebensm-Wiss. Technol. 34:337-347.
 
Mattila P, Pihlava JM, Hellstrom J (2005). Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 53:8290-8295. Crossref
 
Mckeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jacques PF (2004). Carbohydeate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framinghm offspring Cohort. Diabets Care. 27:538. Crossref
 
Morey DD (1961). Forage production of small grains under maximum favourable condition. Agron. J. 53: 57-59.
Crossref
 
Patel TU, Arvadia MK, Malik PK, Patel DD, Patel PS (2011). Production of oats (Avena Sativa.L) under different cutting management and split application of nitrogen. Indian Journal of Agronomy. 56:164-167.
 
Peterson DM, Hahn MJ, Ammonds CL (2002). Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 79:473.
Crossref
 
Regand A, Chowdhury Z, Tosh SM, Wolever TMS, Wood P. (2011). The molecular weight solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chem. 129:297-304.
Crossref
 
Stevens EJ, Wright SC, Pariyar D, Shrestha KK, Munakarmi PB, Mishra CK, Muhammad D and Han J (2000). The importance of oats in resource-poor environments. Proceeding of the 6th International Oat Conference, Christchurch New Zealand. P. 74.
 
Suttie JM, Reynolds SG (2004). Fodder Oats: A World Overview. FAO, View
 
Tiwari U, Cummins E (2011). Meta-analysis of the effect of beta-glucan intake on blood cholesterol and glucose levels. Nutr. 27(10):10081016. Crossref
 
Ulmius M, Adapa S, Önning G, Nilsson L (2012). Gastrointestinal conditions influence the solution behaviour of cereal β-glucans in vitro. Food Chem. 130(3):536-40.
Crossref
 
Ulmius M, Johansson-Persson A, Immerstrand Nordén T, Bergenståhl B, Önning G (2011). Gastrointestinal release of β-glucan and pectin using an in vitro method. Cereal Chem Doi: 10.1094/CCHEM-11--10--0169.
 
Wang Q, Wood PJ, Cui W (2002). Microwave-assisted dissolution of β-glucan in water-implications for the characterization of this polymer. Carbohydr. Pol. 47(1):35-38.
Crossref
 
Welch RW (1995). The Oat Crop: Production and Utilization. ed. Chapman and Hall, UK. P. 584.
Crossref
 
Wood PJ, Beer MU, Butler G (2000). Evaluation of the role of concentration and molecular weight of oat β-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr.pp. 8419-8423.
 
World oats production, consumption, and stocks .United States Department of Agriculture. Retrieved 18 March 2013.
 
Yang JL, Jang JH, Radhakrishnan V, Kim YH, Song YS. (2008). β-Glucan suppresses LPS-stimulated NO production through the down-regulation of iNOS expression and NFkB transactivation in RAW 264.7 macrophages. Food Sci. Biotechnol. 17:106-113.