Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2768

Full Length Research Paper

Diurnal variability of the magnetospheric convective electric field (MCEF) from 1996 to 2019: Comparative investigation into the signatures of the geoeffectiveness of coronal mass ejections and magnetic clouds

Kaboré Salfo
  • Kaboré Salfo
  • Space and Energy Physics Analytical Chemistry Laboratory (LAC@PSE), BP 376 Koudougou, Burkina Faso.
  • Google Scholar
Gyébré Aristide Marie Frédéric
  • Gyébré Aristide Marie Frédéric
  • Space and Energy Physics Analytical Chemistry Laboratory (LAC@PSE), BP 376 Koudougou, Burkina Faso.
  • Google Scholar
Gnanou Inza
  • Gnanou Inza
  • Space and Energy Physics Analytical Chemistry Laboratory (LAC@PSE), BP 376 Koudougou, Burkina Faso.
  • Google Scholar
Ouattara Frédéric
  • Ouattara Frédéric
  • Space and Energy Physics Analytical Chemistry Laboratory (LAC@PSE), BP 376 Koudougou, Burkina Faso.
  • Google Scholar


  •  Received: 02 July 2023
  •  Accepted: 25 August 2023
  •  Published: 30 September 2023

References

Axford WI, Hines CO (1961). A unifying theory of high-latitude Geophysical phenomena and geomagnetic storms. Canadian Journal of Physics 39:1433-1464.
Crossref

 

Axford WI (1969). Magnetospheric convection. Reviews of Geophysics and Space Physics 7:421.
Crossref

 

Benacquista R, Rochel S, Rolland G (2017). Understanding the variability of magnetic storms caused by ICMEs. Annales Geophysicae 35(1):147-159.
Crossref

 

Burlaga L, Sittler E, Mariani F, Schwenn R (1981). Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. Journal of Geophysical Research 86:6673-6684.
Crossref

 

Chapman S, Ferraro VCA (1931). A new theory of magnetic storms, Part I. The initial phase. Terrestrial Magnetism and Atmospheric Electricity 38(2):79-96.
Crossref

 

Dungey JW (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters 6(2):47-48.
Crossref

 

Gnanou I, Zoundi C, Kaboré S, Ouattara F (2022). Variability of the magnetospheric electric field due to high-speed solar wind convection from 1964 to 2009. African Journal of Environmental Science and Technology 16(1):1-9.
Crossref

 

Guibula K, Zerbo JL, Kaboré M, Ouattara F (2019). Critical Frequency foF2 Variations at Korhogo Station from 1992 to 2001 Prediction with IRI-2012. International Journal of Geophysics Article ID 2792101, 11 Pages.
Crossref

 

Gyébré AMF, Kaboré S, Diabaté A, Ouattara F (2022). Seasonal effect on fof2 variability during one-day-shock at Ouagadougou station during solar cycles 20, 21 and 22. International Journal of Advanced Research 10(11):608-616.

 

Gyébré AMF, Ouattara F, Kaboré S, Zerbo JL (2015). Time variation of shock activity due to moderate and severe CMEs from 1966 to 1998. British Journal of Science 13(1).

 

Kaboré S, Guibula K, Zerbo JL, Ouattara F (2021). Solar activities and geomagnetism: Long-term statistical study of magnetics clouds activity day's occurrence as a function of the phases of solar cycles 11 to 24. International Journal of Physical Sciences 16(4):180-187.
Crossref

 

Kaboré S, Gnabahou DA, Ouattara F, Zougmoré F (2019). Solar Cycle Phase and Magnetospheric Convection Electric Filed (MCEF) Time Variation from 1964 to 2009 Under Shock Activity. Journal of Earth and Environment Sciences 7(1).

 

Kaboré S, Ouattara F (2018). Magnetosphere convection electric field (MCEF) time variation from 1964 to 2009: Investigation on the signatures of the geoeffectiveness coronal mass ejections, International Journal of Physical Sciences 13(20):273-281.
Crossref

 

Legrand JP, Simon PA (1989). Solar Cycle and Geomagnetic Activity: A Review for Geophysicists. Part I. The Contributions to Geomagnetic Activity of Shock Waves and of the Solar Wind. Annals of Geophysics 7:565-578.

 

Lilensten J, Blelly PL (2000). From Sun to Earth: Aeronomy and Space Weather. Grenoble Sciences collection, Grenoble University Press, 416 p.

 

McPherron RL, Weygand JM, Hsu TS (2007). Response of the Earth's magnetosphere to changes in the solar wind. Journal Solar-Terrestrial Physics 70(2-4):303-315.
Crossref

 

Nishimura Y, Kikuchi T, Wygant J, Shinbori A, Ono T, Mtsuoka A, Nagatsuma T, Brautigam D (2009). Response of convection electric fields in the magnetosphere to IMF orientation change. Journal of Geophysical Research: Space Physics 114(A9).
Crossref

 

Ouattara F, Kaboré S, Gyébré AMF, Zerbo JL (2015). CMEs' Shock Occurrences from Solar Cycle 11 to solar Cycle 23. European Journal of Scientific Research 130(1):153-159.

 

Ouattara F, Amory Mazaudier C (2009). Solar-geomagnetic activity and Aa indices toward a standard classification. Journal of Atmospheric and Solar-Terrestrial Physics 71(17):1736-1748.
Crossref

 

Poudel P, Simkhada, S, Adhikari B, Sharma D, Nakarmi JJ (2019). Variation of Solar Wind Parameters Along With the Understanding of Energy Dynamics Within the Magnetospheric System During Geomagnetic Disturbances. Earth Space Science 6(2):276-293.
Crossref

 

Revah I, Bauer P (1982). Activity report of the Research Center in Physics of the Terrestrial and Planetary Environment. Technical Note CRPE/115, 38-40 General street Leclerc 92131 Issy-Les Moulineaux.

 

Richardson IG, Cane HV (2010). Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23(1996-2009), Catalog and Summary of Properties. Solar Physics 264:189-237.
Crossref

 

Russel CT (1979). The control of the magnetopause by the interplanetary magnetic fields In Dynamic of the magnetosphere. Akasofu S-I (ed.) University of Alaska, Geophysical Institute, Elvey CT Building, Fairbanks, Alaska, USA pp. 3-21.

 

Russel CT (2007). The coupling of the solar wind to Earth's magnetosphere. In Space weather - Physics and effects Volker Bothmer and Loannis A. Daglis (ed.) Springer, Praxis Publishing, Chichester, UK 103-130.
Crossref

 

Siqueira PM, Paula ER, Muella MTAH, Rezende LFC, Abdu MA, Gonzalez WD (2011). Storm-time total electron contznt and its response to penetration electric fields over South America. Annales Geophysicae 29:1765-17778.
Crossref

 

Turc L (2014). Interaction of magnetic clouds ejected by the Sun with the terrestrial environment. Planet and Universe [physics]. Polytechnic University.

 

Tommaso A, Mirko P, Antonio V, Paula De M, Fabio L, Vincenzo C, Leonardo P (2016). Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations. Annales Geophysicae 34:1069-1084.
Crossref

 

Vijaya Lekshmi D, Balan N, Tulasi Ram S, Liu JY (2011). Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. Journal of Geophysical Research-Space Physics 116:1-13.
Crossref

 

Wu L, Gendrin R, Higel B, Berchem J (1981). Relationships between the solar wind electric field and the magnetospheric convection electric field. Geophysical Research Letters 8(10):1099-1102.
Crossref

 

Wu CC, Lepping RP, Gopalswamy N (2006). Relationships Among Magnetic Clouds, CMES, and Geomagnetic Storms. Solar Physics 239:449.
Crossref

 

Zerbo JL, Ouattara F, Zoundi C, Gyébré AMF (2011). Solar cycle 23 and geomagnetic activity since 1868. CAMES Review-Series A 12(2):255-262.

 

Zerbo JL, Amory-Mazaudier C, Ouattara F, Richardson, JD (2012). Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009. Annales Geophysicae 30(2):421-426.
Crossref