Full Length Research Paper
References
Aloni B, Rosenshtein G (1982). Effect of flooding on tomato cultivars: The relationship between proline accumulation and other morphological and physiological changes. Physiologia Plantarum 56:513-517. |
|
Armstrong W (1980). Aeration in higher plants. In: Woolhouse HW (ed) Advances in Botanical Research 7:225-332. |
|
Arnon D (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1):1-15. |
|
Bahri A (1993). Evolution de la salinité dans un périmètre irrigué de la Basse Vallée de la Medjerda en Tunisie. Science du Sol 31(3):125-140. |
|
Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207. |
|
Bouton JH (2012). An overview of the role of lucerne (Medicago sativa L.) in pastoral agriculture. Crop and Pasture Science 63:734-738. |
|
Bradford M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. |
|
Bruning B, Rozema J (2013). Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany 92:134-143. |
|
Campanelli A, Ruta C, Morome-Fortunato I, De Mastro G (2013). Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection. Central European Journal of Biology 8(8):765-776. |
|
de la Pena TC, Redondo FJ, Manrique E, Lucas MM, Puyeo JJ (2010). Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnology Journal 8:954-965. |
|
El Msehli S, Rima N, Sghaier H, Aschi-Smiti S, Brouquisse R (2016). Impact of hypoxia on nodulation and growth of the legume plant Medicago truncatula in symbiosis with Sinorhizobium meliloti. International Journal of Current Research in Biosciences and Plant Biology 3(11):53-60. |
|
Ehsanpour AA, Fatahian N (2003). Effects of salt and proline on Medicago sativa callus. Plant Cell, Tissue and Organ Culture 73:53-56. |
|
Frendo P, Harrison J, Norman C, Hernandez-Jiménez MJ, Van De Sype G, Gilabert A, Puppo A (2005). Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Molecular Plant-Microbe Interactions 18(3):254-259. |
|
Gauquelin T, Fromard F, Badri W, Dagnac J (1992). Apports d'éléments minéraux au sol par l'intermédiaire de la litière, des pluies et des pluviolessivats dans un peuplement à genévrier thurifère (Juniperus thurifera L) du Haut Atlas occidental (Maroc). Annales des Sciences Forestières 49(6):599-614. |
|
Glenn EP, Brown JJ, Blumwald E (1999). Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences 18(2):227-255. |
|
Khalil C, Haddioui A, El Hansali M, Boufous AH (2016). Growth and proline content in NaCl stressed plants of annual medic species. International Journal of Advanced Research in Biological Sciences 3(9):82-90. |
|
Li R, Shi F, Fukuda K, Yang Y (2010). Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Science and Plant Nutrition 56(5):725-733. |
|
Mansour MM, Ali EF (2017). Evaluation of proline functions in saline conditions. Phytochemistry 140:52-68. |
|
Morard P, Gullo JH (1970). Minéralisation de tissus végétaux en vue du dosage de P, K, Ca, Mg et Na. Annales d'Agronomie 21(2):229-236. |
|
Netto AT, Campostrini E, de Oliveira GJ, Bressan-Smith RE (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104(2):199-209. |
|
Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry 115:126-140. |
|
Rogers VE (1974). The response of lucerne cultivars to levels of waterlogging. Australian Journal of Experimental Agriculture and Animal Husbandry 14(69):520-525. |
|
Rogers ME, Colmer TD, Frost K, Henry D, Cornwall D, Hulm E, Deretic J, Hughes SR, Craig AD (2008). Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant Soil 304: 89-101. |
|
Rogers ME, Colmer TD, Frost K, Henry D, Cornwall D, Hulm E, Hughes S, Nichols PGH, Craig AD (2009). The influence of NaCl salinity and hypoxia on aspects of growth in Trifolium species. Crop and Pasture Science 60:71-82. |
|
Rogers ME, Colmer TD, Nichols PGH, Hughes SJ, Frost K, Cornwall D, Chandra S, Miller SM, Craig AD (2011). Salinity and waterlogging tolerance amongst accessions of messina (Melilotus siculus). Crop and Pasture Science 62:225-235. |
|
Smethurst CF, Garnett T, Shabala S (2005). Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant and Soil 270:31-45. |
|
Smethurst CF, Rix K, Garnett T, Auricht G, Bayart A, Lane P, Wilson SJ, Shabala S (2008). Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Functional Plant Biology 35(7):640-650. |
|
Striker GG, Colmer TD (2017). Flooding tolerance of forage legumes. Journal of Experimental Botany 68(8):1851-1872. |
|
Tujeta N (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419-438. |
|
Velasco NF, Ligarreto GA, Díaz HR, Fonseca LPM (2019). Photosynthetic responses and tolerance to root-zone hypoxia stress of five bean cultivars (Phaseolus vulgaris L.). South African Journal of Botany 123:200-207. |
|
Zahran HH (1999). Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiology and Molecular Biology Reviews 63(4):968-989. |
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0