African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6860

Full Length Research Paper

Quantitative trait loci (QTL) mapping of resistance to coffee berry disease (Colletotrichum kahawae Waller & Bridge) in Coffea arabica L. variety Rume Sudan

James Mwita Gimase
  • James Mwita Gimase
  • Kenya Agricultural and Livestock Research Organization (KALRO) - Coffee Research Institute, P. O. Box 4-00232, Ruiru, Kenya.
  • Google Scholar
Wilson Muriithi Thagana
  • Wilson Muriithi Thagana
  • Department of Agricultural Science and Technology, School of Agriculture and Enterprise Development, Kenyatta University, P.O Box 43844 – 00100, Nairobi, Kenya.
  • Google Scholar
Chrispine Ogutu Omondi
  • Chrispine Ogutu Omondi
  • KALRO – Sugar Research Institute, P. O. Box 44- 40100, Kisumu, Kenya.
  • Google Scholar
Jane Jerono Cheserek
  • Jane Jerono Cheserek
  • Kenya Agricultural and Livestock Research Organization (KALRO) - Coffee Research Institute, P. O. Box 4-00232, Ruiru, Kenya.
  • Google Scholar
Bernard Mukiri Gichimu
  • Bernard Mukiri Gichimu
  • Department of Agricultural Resource Management, School of Agriculture, University of Embu, P. O. Box 6 - 60100, Embu, Kenya.
  • Google Scholar
Elijah Kathurima Gichuru
  • Elijah Kathurima Gichuru
  • Kenya Agricultural and Livestock Research Organization (KALRO) - Coffee Research Institute, P. O. Box 4-00232, Ruiru, Kenya.
  • Google Scholar


  •  Received: 10 March 2020
  •  Accepted: 23 June 2020
  •  Published: 31 August 2020

References

Agwanda CO, Lashermes P, Trouslot P, Combes MC, Charrier A (1997). Identification of RAPD markers for resistance to coffee berry disease, Colletotrichum kahawae, in arabica coffee. Euphytica 97:241-248.
Crossref

 

Akohoue F, Achigan-Dako EG, Sneller C, Van Deynze A, Sibiya J (2020). Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting's groundnut [Macrotyloma geocarpum (Harms) Mare'chal & Baudet]. PLoS ONE 15(6):e0234769
Crossref

 

Alam M, Neal J, O'Connor K, Kilian A, Topp B (2018). Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in macadamia. PLoS ONE 13(8):e0203465.
Crossref

 

Awata LAO, Beyene Y, Gowda M, Suresh LM, Jumbo MB, Tongoona P, Danquah E, Ifie BE, Marchelo-Dragga PW, Olsen M, Ogugo V, Mugo S, Prasanna BM (2020). Genetic Analysis of QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations. Genes 11(1):32. 
Crossref

 

Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004). Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology 14(3):283-291.
Crossref

 

Baruah A, Naik V, Hendre PS, Rajkumar P, Aggarwal RK (2003). Isolation and characterization of nine microsatellite markers from Coffea arabica L. showing wide cross-species amplification. Molecular Ecology Notes 3:647-650.
Crossref

 

Barilli E, Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D (2018). A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs Controlling Rust Resistance. Frontiers in Plant Science 9:167. 
Crossref

 

Brito AC, Oliveira AS, Oliveira EJ (2017). Genome-wide association study for resistance to cassava root rot. Journal of Agricultural Science 155:1424-1441.
Crossref

 

Camacho LFS, Coan MMD, Scapim CA, Pinto RJB, Tessmann DJ, Contreras‐Soto RI (2019). A genome‐wide association study for partial resistance to southern corn rust in tropical maize. Wiley- Plant Breeding. 
Crossref

 

Curtolo M, Cristofani-Yaly M, Gazaffi R, Takita MA, Figueira A, Machado MA (2017). QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genomics 18:289. DOI 10.1186/s12864-017-3629-2
Crossref

 

Doyle, JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11-15.

 

Elshire RJ, Glaubitz JC, Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E., Mitchell, S. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 6(5): e19379.
Crossref

 

Garavito A, Montagnon C, Guyot R, Bertrand B (2016). Identification by the DArTseq method of the genetic origin of the Coffea canephora cultivated in Vietnam and Mexico. BMC Plant Biology 16:242. 
Crossref

 

Gichuru EK, Agwanda CO, Combes MC, Mutitu EW, Ngugi ECK, Bertrand B, Lasherme, P (2008). Identification of molecular markers linked to a gene conferring resistance to Coffee berry disease (Colletotrichum kahawae) in Coffea arabica. Plant Pathology 57:1117-1124. 
Crossref

 

Gimase JM, Thagana WM, Omondi CO, Ithiru JM (2019). Evaluation of coffee berry disease resistance (Colletotrichum kahawae) in F2 populations derived from Arabica coffee varieties Rume Sudan and SL 28. Journal of Plant Breeding and Crop Science 11(9):225-233. 
Crossref

 

Hindorf H, Omondi CO (2011). A review of three major fungal diseases of Coffea arabica L. in the rainforests of Ethiopia and progress in breeding for resistance in Kenya. Journal of Advanced Research 2(2):109-120.
Crossref

 

Horn F, Habekuß A, Stich B (2015). Linkage mapping of Barley yellow dwarf virus resistance in connected populations of maize. BMC Plant Biology 15:29. 
Crossref

 

Jaetzold R, Schimidt H, Hornez H, Shisanya C (2006). Farm Management Handbook of Kenya, Vol. II/C: Natural Conditions and Farm Management Information, Central Kenya. Ministry of Agriculture, Nairobi; Kenya. p.573.

 

Kim SM, Reinke RF (2019). A novel resistance gene for bacterial blight in rice, Xa43(t)identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE 14(2):e0211775.
Crossref

 

Kthiri D, Loladze A, N'Diaye A, Nilsen KT, Walkowiak S, Dreisigacker S, Ammar K, Pozniak CJ (2019). Mapping of Genetic Loci Conferring Resistance to Leaf Rust from Three Globally Resistant Durum Wheat Sources. Journal of Advanced Research 10:1247. 
Crossref

 

Kosambi DD (1943). The estimation of map distances from recombination values. Annals of Eugenics 12(1):172-175. 
Crossref

 

Lashermes P, Combes MC, Ansaldi C, Gichuru E, Noir S (2011). Analysis of alien introgression in the coffee tree (Coffea arabica L.) Mol Breeding 27:223-232. 
Crossref

 

Li Q, Guo J, Chao K, Yang J, Yue W, Ma D, Wang B (2018). High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene YrBai in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis. Frontiers in Plant Science 9:1120. 
Crossref

 

McDonald J (1926). A preliminary account of a disease of green berries in the Kenya colony. Transactions of the British Mycological Society 11(1-2):145-154.
Crossref

 

Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal 3(3):269-283. 
Crossref

 

Moncada MP, Tovar E, Montoya JC, González A, Spindel J, McCouch S (2016). A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield, plant height, and bean size. Tree Genetics and Genomes 12:5. 
Crossref

 

Nemli S, Asciogul TK, Ates D, Esiyok D, Tanyola MB (2017). Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkey. Turkish Journal of Agriculture and Forestry 41:389-404. 
Crossref

 

Pestana KN, Capucho AS, Caixeta ET, de Almeida DP, Zambolim EM, Cruz CD, Zambolim L, Pereira AA, Oliveira ACB, Sakiyama NS (2015). Inheritance study and linkage mapping of resistance loci to Hemileia vastatrix in Híbrido de Timor UFV 443-03. Tree Genetics and Genomes 11:72.
Crossref

 

Prakash NS, Combes MC, Somanna N, Lashermes P (2002). AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica 124:265-271.
Crossref

 

Robinson RA (1976). Plant pathosystems. Advanced Series in Agricultural Sciences, Springer Verlag Berlin, New York 3:184.
Crossref

 

Rouet C, Lee EA, Banks T, O'Neill J, LeBlanc R, Somers DJ (2019). Identification of polymorphism within the Rosa multifora muRdr1A gene linked to resistance to multiple races of Diplocarpon rosae W. in tetraploid garden roses (Rosa x hybrida). Theoretical and Applied Genetics. 
Crossref

 

Sant'Ana GC, Pereira LFP, Pot D, Ivamoto ST, Domingues DS, Ferreira RV, Pagiatto NF, da Silva BS, Nogueira LM, Kitzberger CS, Scholz MB (2018). Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Scientific. Reports 8:465.
Crossref

 

Scalabrin S, Toniutti L, Gaspero G, Scaglione D, Magris G, Vidotto M, Pinosio S, Cattonaro F, et al (2020). A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Scientific Reports 10:4642
Crossref

 

Sitonik C, Suresh LM, Beyene Y, Olsen MS, Makumbi D, Kiplagat O, Das B, Bright JM, Mugo S, Crossa J, Tarekegne A, Prasanna BM, Gowda M (2019). Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics 132:2381-2399. 
Crossref

 

Tsai HY, Janss LL, Andersen JR, Orabi J, Jensen JD, Jahoor A, Jensen J (2020). Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports 10:3347.
Crossref

 

Van Der Graaf NA (1978). Selection for resistance to coffee berry disease in arabica coffee in Ethiopia. Evaluation of Selection Methods 84:2055215.
Crossref

 

Van der Vossen HAM, Cook RTA, Murakaru GNW (1976). Breeding for resistance to Coffee Berry Disease caused by Colletotrichum coffeanum Noack sensu Hindorf in Coffea arabica L. I. Methods of pre-selection for resistance. Euphytica 25:733-756.
Crossref

 

Van der Vossen HAM, Walyaro DJ (1980). Breeding for resistance to coffee berry disease in coffea arabica L. II. Inheritance of the resistance. Euphytica 29:777-791.
Crossref

 

Van der Vossen H, Bertrand B, Charrier A (2015). Next-generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204:243. 
Crossref

 

Vining KJ, Salinas N, Tennessen JA, Zurn JD, Sargent DJ, Hancock J, Bassil NV (2017). Genotyping-by-sequencing enables linkage mapping in three octoploid cultivated strawberry families. Peer Journal 5:e3731. 
Crossref

 

Waller JM, Bridge PD, Black R, Hakiza G (1993). Characterization of the coffee berry disease pathogen, Colletotrichum kahawae sp. nov. Mycological Research 97(8): 989-94.
Crossref

 

Xiong H, Guo H, Zhou C, Guo X, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L (2019) A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low nitrogen traits by a wheat mutant population. PLoS ONE 14(1): e0211492. 
Crossref

 

Zhang L, Li H, Li Z, Wang J (2008). Interactions between markers can be caused by the dominance effect of quantitative trait loci. Genetics 180:1177-1190.
Crossref

 

Zhou Z, Zhang C, Lu X, Wang L, Hao Z, Li M, Zhang D, Yong H, Zhu H, Weng J, Li X (2018) Dissecting the Genetic Basis Underlying Combining Ability of Plant Height Related Traits in Maize. Frontiers in Plant Science 9:1117. 
Crossref