African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6863

Full Length Research Paper

Inoculation of native arbuscular mycorrhizal fungi based bio-fertilizers for improvement of maize productivity in Central Benin

ASSOGBA A. Sylvestre
  • ASSOGBA A. Sylvestre
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar
AHOYO ADJOVI R. Nestor
  • AHOYO ADJOVI R. Nestor
  • National Institute of Agricultural Research of Benin, Cotonou, Benin.
  • Google Scholar
BELLO Saliou
  • BELLO Saliou
  • National Institute of Agricultural Research of Benin, Cotonou, Benin.
  • Google Scholar
NOUMAVO A. Pâcome
  • NOUMAVO A. Pâcome
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar
SINA Haziz
  • SINA Haziz
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar
AGBODJATO A. Nadège
  • AGBODJATO A. Nadège
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar
KODA Abdel D.
  • KODA Abdel D.
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar
AGUEGUE M. Ricardos
  • AGUEGUE M. Ricardos
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar
ADJANOHOUN Adolphe
  • ADJANOHOUN Adolphe
  • National Institute of Agricultural Research of Benin, Cotonou, Benin.
  • Google Scholar
BABA-MOUSSA Lamine
  • BABA-MOUSSA Lamine
  • Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technics, University of Abomey-Calavi, Cotonou, Benin.
  • Google Scholar


  •  Received: 04 December 2019
  •  Accepted: 21 April 2020
  •  Published: 31 May 2020

References

Abbas Y (2014). Microorganisms in the rhizosphere of Tetraclinaria: a tool to optimize the assisted regeneration of Tetraclinis articulates Vahl. M.Sc., Ph.D. Thesis, Mohammed V University, Faculty of Science Rabat, 157p.

 

Aboubacar K, Zakari MO, Harouna IA, Seydou I, Alzouma M, Zoubeirou (2013). Effect of co-inoculation of rhizobium and mycorrhizae on the agronomic performance of cowpeas (Vigna unguiculata (L.) Walp.) in Niger. Journal of Applied Biosciences 72:5846-5854.
Crossref

 

Anguiby BLA, Ouattara G, Bomisso EL, N'goran B, Ouattara B, Coulibaly SA, Aké S (2019). Evaluation du statut mycorhizien d'arbres de Ceiba pentandra (L), Gaertn et Tieghemella heckelii (A.Chev), Pierre, du jardin Botanique de Bingerville en Côte d'Ivoire Journal of Applied Biosciences 138:14092-14105.
Crossref

 

Anne P (1945). Sur le dosage rapide du carbone organique dans les sold Ann: Agroni Avril, Mai, Juin, 1945, 5he année 2:161-172.

 

Bakonyi I, Csitári G (2018). Response of winter wheat to arbuscular mycorrhizal fungal inoculation under farm conditions. Journal of Agriculture and Environmental Sciences 5:1.
Crossref

 

Balliu A, Sallaku G, Rewald B (2015). AMF Inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967-15981.
Crossref

 

Balogoun I, Saïdou A, Ahoton LE, Adjanohoun A, Amadji GL, Ezui G, Youl S, Mando A, Igué AM, Sinsin BA (2013). Détermination des formules d'engrais minéraux et des périodes de semis pour une meilleure production du maïs (Zea mays L.) au Sud et au Centre Bénin. Bulletin de la Recherche Agronomique du Bénin, ISSN sur papier : 1025-2355, Numéro spécial Fertilité du maïs, pp.: 1-25

 

Beltrano J, Ruscittil M, Arango MC, Ronco M (2013). Effects of Arbuscular Mycorrhiza Inoculation on Plant Growth, Biological and Physiological Parameters and Mineral Nutrition in Pepper Grown under Different Salinity and P Levels. Journal of Soil Science and Plant Nutrition 13(1):123-141.
Crossref

 

Benjelloun S, El Harchli EH, Amrani JK, El Ghachtouli N, Fikri Benbrahim K, El Yamani J (2014). Etude De L'importance De la Mycorhization dans la Synthèse des composés phénoliques chez le Maïs (Zea mays L.) en condition de stress hydrique. Research Inventy: International Journal of Engineering and Science 4(12):43-49.

 

Bray RH, Kurtz LT(1945). Determination of total organic and available forms of phosphorus in soils. Soil Science 59:39-45.
Crossref

 

Ceballos I, Ruiz M, Fernández C, Peña R, Rodriguez A, Sanders IR (2013). The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLOS ONE 8(8):e70633.
Crossref

 

Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017). Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Frontiers in Microbiology 8:2516.
Crossref

 

Chen MM, Arato L, Borghi E, Nouri, Reinhardt D (2018). Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. Frontiers in Plant Science 9:1270.
Crossref

 

Diallo B, Samba SAN, Sane D (2016). Effects of MA fungi on the growth and development of castor seedlings grown under saline stress under semiconductor conditions. Revue des Energies Renouvelables19(1):59-68.

 

Duponnois R, Ramanankierana H, Hafidi M, Baohanta R, Baudoin E, Thioulouse J, Lebrun M (2013). Endemic plant resources to sustainably optimize forest cover rehabilitation operations in Mediterranean and tropical environments: example of plants that facilitate the spread of mycorrhizal fungi. Biology Reports 336 (5-6):265-272.
Crossref

 

Evelin H, Giri B, Kapoor R (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203-217.
Crossref

 

Fernández F, Gómez R, Vanegas LF, de la Noval BM, Martínez MA (2000). Mycorrhizogenic inoculant product. National Office of Industrial Property. Cuba, Patent No. 22641.

 

Gholami A, Shahsavani S, Nezarat S (2009). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize. World Academy of Science, Engineering and Technology 49:19-24.

 

Giovannetti M, Mosse B (1980). An evaluation of techniques for measuring vesicular- arbuscular infection in roots. New Phytologist 84:489-500.
Crossref

 

Gnamkoulamba A, Tounou AK, Tchao M, Tchabi A, Adjevi AKM, Batawila K (2018). Field assessment of the growth potential and production of rice (Oryza sativa L.) variety IR841 inoculated in the nursery by four strains of arbuscular mycorrhizal fungi. European Scientific Journal 14:12.
Crossref

 

Gottshall CB, Cooper M, Emery SM (2017). Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity. Agriculture, Ecosystems and Environment 241:142-149.
Crossref

 

Hoeksema JD (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13:394-407.
Crossref

 

Igue MA, Oga AC, Balogoun I, Saidou A, Ezui GYS, Kpagbin G, Mando A, Sogbedji JM (2016). Détermination des formules d'engrais minéraux et organiques sur deux types de sols pour une meilleure productivité de maïs (Zea mays l.) dans la commune de Banikoara (Nord-Est Du Bénin). European Scientific Journal 12:30.
Crossref

 

Jin H, Germida JJ, Walley FL (2013). Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Applied Soil Ecology 72:22-30.
Crossref

 

Kapoor R, Evelin H, Mathur P, Giri B (2013). Arbuscular mycorrhiza: Approaches for abiotic stress tolerance incropplantsforsustainableagriculture. In Plan tAcclimation to Environmental Stress; Tuteja, N., Gill, S.S., Eds.; Springer: New York, NY, USA,; pp. 359-401.
Crossref

 

Kjeldahl J (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Analytische Chemie 22:366-382.
Crossref

 

Kouadio AN, Nandjui J, Zézé A (2017). An Indigenous and an Exotic AMF Strains Improve Dioscorea Alata growth and induce tolerance to Meloidogyne spp., Agricultural Science Research Journal 7(2):63-69.

 

Kumari S, Merina P, Srimeena N (2019). Arbuscular Mycorrhizal Fungi (AMF) Induced Defense Factors against the Damping-off Disease Pathogen, Pythium aphanidermatum in Chilli (Capsicum annum). International Journal of Current Microbiology and Applied Sciences 8(6):2243-2248.
Crossref

 

Lekberg Y, Koide RT (2005): Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist 168:189-204.
Crossref

 

MAEP (Ministère de l'Agriculture de l'Elevage et de la Pêche) (2017). Recueil des technologies agricoles prometteuses développées par le Système National de Recherche Agricole (SNRA) de 1996 à 2015 Document Technique et d'Informations. ISBN : 978-99919-2-985-9 Dépôt légal n° 9433 du 12 juin 2017 Bibliothèque Nationale du Bénin, 2èmetrimestre. 288p

 

Malonda AN, Nzola-meso TM, Manga AM, Yandju MC (2019). Effet des champignons mycorhiziens Arbusculaires sur le phosphore des sols tropicaux et implication dans la biosynthèse du caroténoïde du manioc. Journal of Applied Biosciences 135:137.

 

Miller RM, Jastrow JD (2010). Mycorrhizal fungi influence soil structure. In: Kapulnik, Y., Douds, D. (Eds.) Arbuscular mycorrhizas: Physiology and function. Chapter 1. Kluwer Academic Publishers.

 

Mitra D, Navendra U, Panneerselvam U, Ansuman S, Ganeshamurthy AN, Divya J (2019). Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal of Life Sciences and Applied Science 1:1-10.

 

Pagano MC (2014). Drought stress and mycorrhizal plant. In Use of Microbes for the Alleviation of Soil Stresses; Miransari, M., Ed.; Springer: New York, NY, USA 1:97-110.
Crossref

 

Pavithra D, Yapa N (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater for Sustainable Development 7:490-494.
Crossref

 

Pellegrino E, Opik M, Bonari E, Ercoli L (2015). Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry 84:210-217
Crossref

 

Phillip JM, Hayman DS (1970). Improved procedures for cleaning roots and staining parasitic and vesicular arbuscularmycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 5:158-161.
Crossref

 

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019). nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 31-141 https://CRAN.R-project.org/package=nlme.

 

Plenchette C, Bois JF, Duponnois R, Cadet P (2000). Mycorrhization (Glomus aggregatum) of millet (Pennisetum glaucum). Soil Studies and Management 7(4):379-383.

 

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196:91-108.
Crossref

 

Ruget F, Bonhomme R, Chartier M (1996). Estimation Simple de la Surface Foliaire de Plantes de Maïs en Croissance. Agronomien 16(9):553-562.
Crossref

 

Sarah S, Ibrar M (2016). Effects of arbuscular mycorrhizal fungi on spores density and root colonization of four hybrids of sunflower (Helianthus annuus L.) at different rock phosphate levels. Sarhad Journal of Agriculture 32(4):258-266.
Crossref

 

Sasvári Z (2017). Study of arbuscular mycorrhizal fungal diversity in long-term field experiments. PhD dissertation, Szent István University, GödöllÅ‘.

 

Sharma S, Prasad R, Varma A, Sharma AK (2017). Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian Journal of Plant Pathology 11(4):192-202.
Crossref

 

Sun Z, Song J, Xin X, Xie X, Zhao B (2018). Arbuscular mycorrhizal fungal proteins 14-3-3- are involved in arbuscule formation and responses to a biotic stress during AM symbiosis. Frontiers in Microbiology 5:9-19.
Crossref

 

Tchinmegni FI, Tsobeng AC, Ngonkeu MEL, Tchoundjeu Z (2016). Evaluation du statut mycorhizien chez Allanblackia floribunda en vue de sa domestication en zones forestières humides du Cameroun, Revue Scientifque et Technique Forêt et Environnement du Bassin du Congo 6:81-83.

 

Treseder KK (2013). The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil 371:1-13.
Crossref

 

Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986). Measurement of the VA mycorrhization rate of a root system. Research and estimation methods of functional significance. In: Physiological and genetic aspects of mycorrhizae, Dijon, 1985. INRA (ed.), pp. 217-221.

 

Van der Heijden MG, Boller T, Wiemken A, Sanders IR (1998). Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79(6):20822091.
Crossref

 

Walder F, van der Heijden MGA (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants 1:15159
Crossref

 

Zhang F, Jia-Dong HE, Qiu-Dan NI, Qiang-Sheng WU, Zou YN (2018). Enhancement of drought tolerance in trifoliate orange by mycorrhiza: changes in root sucrose and proline metabolisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46:270.
Crossref