African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6853

Full Length Research Paper

Osmotic stress in Chenopodium quinoa Willd.: Variations in osmoprotectants at different phenological stages

Jose Delatorre-Herrera
  • Jose Delatorre-Herrera
  • Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, PO Box 121, Iquique, Chile.
  • Google Scholar
Javier Rojas-Urrutia
  • Javier Rojas-Urrutia
  • Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, PO Box 121, Iquique, Chile.
  • Google Scholar
Leonel E. Rojo
  • Leonel E. Rojo
  • Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O´Higgins 3363, Santiago, Chile.
  • Google Scholar
Brittany L. Graf
  • Brittany L. Graf
  • Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ 08901, USA.
  • Google Scholar


  •  Received: 23 August 2018
  •  Accepted: 04 January 2019
  •  Published: 07 February 2019

References

Adolf VI, Jacobsen S.E, Shabala S (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany 92:43-54.
Crossref

 

Alves A, Setter T (2004). Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environmental and Experimental Botany 51(3):259-271.
Crossref

 

Ancillotti C, Bogani P, Biricolti S, Calistri E, Checchini L, Ciofi L, Gonnelli C, Del Bubba M (2015). Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress. Plant Physiology and Biochemistry 97:52-61.
Crossref

 

Arenas J, Lanino M (2008). Antecedentes agrometeorológicos y de evapotranspiración del sector de Vilacollo, Comuna de Colchane. Revista Agricultura de Desierto 10:22.

 

Avonce N, Leyman B, Mascorro-Gallardo J, Van Dijck P, Thevelein J, Iturriaga G (2004). The Arabidopsis Trehalose-6-P Synthase AtTPS1 Gene Is a Regulator of Glucose, Abscisic Acid, and Stress Signaling. Plant Physiology 136:3649-3659.
Crossref

 

Avonce N, Leyman B, Thevelein J, Iturriaga G (2005). Trehalose metabolism and glucose sensing in plants. Biochemical Society Transactions 33:276-279.
Crossref

 

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207.
Crossref

 

Becares A, Bazile D (2009). La quinoa como parte de los sistemas agrícolas en Chile: 3 regiones y 3 sistemas. Revista Geográfica de Valparaíso 42:61-72.

 

Boriboonkaset T, Theerawitaya C, Yamada N, Pichakum A, Supaibulwatana K, Cha-um S, Takabe T, Kirdmanee C (2013). Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma 250(5):1157-1167.
Crossref

 

Cortina C, Culiá-ez-Macia FA (2005). Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science 169:75-82.
Crossref

 

Da Silva JM, Arrabaca MC (2004). Contributions of soluble carbohydrates to the osmotic adjustment in the C-4 grass Setaria sphacelata: A comparison between rapidly and slowly imposed water stress. Journal of Plant Physiology 161(5):551-555.
Crossref

 

de Sousa DPF, Braga B, Gondim F.A, Gomes E, Martins K, de Brito POB (2016). Increased drought tolerance in maize plants induced by H2O2 is closely related to an enhanced enzymatic antioxidant system and higher soluble protein and organic solutes contents. Theoretical and Experimental Plant Physiology 28(3):297-306.
Crossref

 

Delatorre-Herrera J, Pinto M (2009).Importance of ionic and osmotic components of salt stress on germination of four quinua (Chenopodium quinoa Willd.) selections. Chilean Journal of Agricultural Research 69(4):477-485.
Crossref

 

Delorge I, Janiak M, Carpentier S, Van Dijck P (2014). Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Frontiers in Plant Science P 5.
Crossref

 

Elbein AD, Pan YT, Pastuszak I, Carroll D (2003). New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R-27R.
Crossref

 

Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C (2010). Trehalose and plant stress responses: friend or foe? Trends in Plant Science 15(7):409-417.
Crossref

 

García D, Petzall C, Castrillo M (2004).Respuestas al deficit hídrico en las variedades de tomate Río Grande y pera Quibor. Agronomía Tropical 54:411-431.

 

García P, Asega A, Silva E, Carvalho M (2011). Effect of drought and re-watering on fructan metabolism in Vernonia herbacea (Vell.) Rusby Plant Physiology and Biochemistry 49:664-670.
Crossref

 

Ghneim-Herrera T, Rosales A, Aguilar M, Pieters A.J, Pérez-Almeida I, Torrealba G (2006). Identificación de cultivares de arroz con alta capacidad de ajuste osmótico para el mejoramiento genético de la tolerancia a la sequía. Agronomía Tropical 56(4):677-687. Disponible en: 

View

 

Ghoulam C, Foursy A, Fares K (2002).Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany 47(1):39-50.
Crossref

 

Goddijn OJM, van Dun K (1999). Trehalose metabolism in plants. Trends in Plant Science 4(8):315-319.
Crossref

 

Graf BL, Rojo LE, Delatorre-Herrera J, Poulev A, Calfio C, Raskin I (2016). Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: variation and correlation to physico-chemical characteristics. Journal of the Science of Food and Agriculture 96(2):633-643.
Crossref

 

Grieve CM, Grattan S.R (1983).Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil 70(2):303-307.
Crossref

 

Gupta AK, Kaur N (2005). Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences 30(5):761-776.
Crossref

 

Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany 62:185-193.
Crossref

 

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51:463-499.
Crossref

 

Hassine A, Lutts S (2010). Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology 167:1448-1456.
Crossref

 

Higashiyama T (2002).Novel functions and applications of trehalose. Pure and Applied Chemistry 74(7):1263-1269.
Crossref

 

Hohmann S, Thevelein JM (1995). Trehalose synthase: guard to the gate of glycolysis in yeast?. TIBS 20:3-10.
Crossref

 

Iordachescu M, Imai R (2008). Trehalose biosynthesis in response to abiotic stresses. Journal of Integrative Plant Biology 50(10):1223-1229.
Crossref

 

Lutz M, Martinez A, Martinez EA (2013). Daidzein and Genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Industrial Crops and Products 49:117-121.
Crossref

 

Mancilla-Margalli A, López M.G 2006. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. Journal of Agricultural and Food Chemistry 54(20):7832-7839.
Crossref

 

Morales AJ, Baijgain P, Garver Z, Maughan PJ, Udall JU (2011). Physiological responses of Chenopodium quinoa to salt stress. International Journal of Plant Physiology and Biochemistry 3:219-232.

 

Munns R, Schachtman D, Condon A (1995). The significance of a two-phase growth response to salinity in wheat and Barley. Australian Journal of Plant Physiology 22:561-569.

 

Nio SA, Cawthray GR, Wade LJ, Colmer TD (2011). Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage Plant Physiology and Biochemistry 49:1126-1137.
Crossref

 

Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Ruiz-Carrasco KB, Martínez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011). Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology 38:1039 1-14.

 

Panuccio MR, Jacobsen S.E, Akhtar SS, Muscolo A (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. Aob Plants P 6.
Crossref

 

Paul M, Pellny T, Goddjin O (2001). Enhancing photosynthesis with sugar signals. Trends in plant science 6:197-200.
Crossref

 

Raney JA, Reynolds DJ, Elzinga DB, Page J, Udall J, Jellen EN, Maughan PJ (2014).Transcriptome analysis of drought induced stress in Chenopodium quinoa. American Journal of Plant Sciences 5:338-357.
Crossref

 

Rengasamy P (2006). World salinization with emphasis on Australia. Journal of Experimental Botany 57(5):1017-1023.
Crossref

 

Ritsema T, Smeekens SCM (2003). Engineering fructan metabolism in plants. Journal of Plant Physiology 160(7):811-820.
Crossref

 

Rose M, Podazza G, Interdonato R, González JA, Hilal FEP (2009). Soluble sugars—Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior 4(5):388-393.
Crossref

 

Ruiz K, Biondi S, Martínez E.A, Orsini F, Antognonie F, Jacobsen SE (2015). Quinoa - a model crop for understanding salt tolerance mechanisms in halophytes. Plant Biosystems 150(2):357-371.
Crossref

 

Schlick G, Bubenheim D (1993). Quinoa: An emerging"new" crop with potencial for CELSS. NASA. Ames Research Center P 3422.

 

Scholander PF, Bradstreet ED, Hammel EA (1965). Sap Pressure in Vascular Plant: Negative hydrostatic pressure can be measured in plants. Science 148(339):46.
Crossref

 

Singh R, Karamdeep L, Bhullar S.S, Gupta AK (1994). Metabolism of free sugars in relation to the activities of enzimes involved in sucrose metabolism and nitrogen assimilation in the developing nodules of chickpea. Plant Physiology and Biochemistry 32(6):875-882.

 

Smirnoff N (1998).Plant resistance to environmental stress. Current Opinion in Biotechnology 9:214-219.
Crossref

 

Trevanion SJ (2002). Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate. Planta (215):653-665.

 

Tsai AYL, Gazzarrini S (2014). Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Frontiers in Plant Science P 5.
Crossref

 

Valluru R, Van den Ende W (2008). Plant fructans in stress environments: emerging concepts and future prospects. Journal of Experimental Botany 59(11):2905-2916.
Crossref

 

Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90(15):2541-2547.
Crossref

 

Wang WX, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1-14.
Crossref

 

Wingler A, Fritzius T, Wiemken A, Boller T, Aesbacher RA (2000). Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiology 124:105-114.
Crossref