African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Metabolic engineering of Corynebacterium glutamicum to enhance L-leucine production

Huang Qingeng
  • Huang Qingeng
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Liang Ling
  • Liang Ling
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Wu Weibin
  • Wu Weibin
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Wu Songgang
  • Wu Songgang
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Huang Jianzhong
  • Huang Jianzhong
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar


  •  Received: 24 January 2017
  •  Accepted: 20 April 2017
  •  Published: 03 May 2017

Abstract

This work aimed to develop an efficient L-leucine industrial production strain of Corynebacterium glutamicum by using metabolic engineering. A recombinant C. glutamicum strain was constructed by expressing a feedback-resistant leuA-encoded 2-isopropylmalate synthase (IPMS) that carries three amino acid exchanges (R529H, G532D and L535V) from the mutant strain C. glutamicum ML1-9 which was obtained by screening for structural analogues. In order to improve the expression of IPMS, a strong promoter (tac promoter) was used to ensure efficient expression of the rate-limiting enzyme. In addition, reasonable metabolic modifications on the central carbon metabolic pathway and competitive metabolic pathways to optimize the L-leucine biosynthesis pathway by redistribution of various types of precursors and repression of negative regulation were used aimed for increased L-leucine production. The modifications involved (1) deletion of the gene encoding the repressor LtbR to increase expression of leuBCD, (2) deletion of the gene encoding the AlaT to decrease the concentration of extracellular L-alanine, and increased availability of pyruvate for L-leucine formation, (3) deletion of the gene encoding the threonine dehydratase to abolish L-isoleucine synthesis and to eliminate the intermediate precursor of L-isoleucine biosynthesis competing with L-leucine biosynthesis, (4) inactivation of the pantothenate synthetase to increase α- ketoisovalerate formation, and to enable its further conversion to L-leucine, and (5) inactivation of lactate dehydrogenase to decrease lactate production and its pyruvate consumption, concomitant to decreased glucose consumption rates and prevention of lactic acid to restrict cell growth. The production performance of the engineered strain MDLeu-19/pZ8-1leuAr was characterized with cultivations in a bioreactor. Under fed-batch conditions in a 50-L automated fermentor, the best producer strain accumulated 38.1 g L-1 of L-leucine; the molar product yield being 0.42 mol L-leucine per mole of glucose (glucose conversion rate attained 26.4%). Moreover, during large-scale fermentation using a 150-m3 fermentor, this strain produced more than 37.5 g L-1 L-leucine and the glucose conversion rate was 25.8%, making this process potentially viable for industrial production.

 

Key words: Corynebacterium glutamicum, L-leucine, metabolic engineering, fermentation, industrial production.