African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Metabolic engineering of Corynebacterium glutamicum to enhance L-leucine production

Huang Qingeng
  • Huang Qingeng
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Liang Ling
  • Liang Ling
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Wu Weibin
  • Wu Weibin
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Wu Songgang
  • Wu Songgang
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar
Huang Jianzhong
  • Huang Jianzhong
  • Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Qishan Campus, Fuzhou City, Fujian Province, P. R. China.
  • Google Scholar


  •  Received: 24 January 2017
  •  Accepted: 20 April 2017
  •  Published: 03 May 2017

References

Ambe-Ono Y, Sato K, Totsuka K, Yoshihara Y, Nakamori S (1996). Improved L-Leucine production by an alpha-aminobutyric acid resistant mutant of Brevibacterium lactofermentum. Biosci. Biotechnol. Biochem. 60(8):1386-1387.
Crossref

 

Becker J, Gießelmann G, Hoffmann SL, Wittmann C (2016). Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. Adv. Biochem. Eng. Biotechnol. epub. 
Crossref

 
 

Becker J, Kind S, Wittmann C (2012). Systems Metabolic Engineering of Corynebacterium glutamicum for Biobased Production of Chemicals, Materials and Fuels. Systems Metabolic Engineering. Springer Netherlands. pp. 151-191.
Crossref

 
 

Becker J, Wittmann C (2012). Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 23(4):631-640.
Crossref

 
 

Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011). From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13(2):159-168.
Crossref

 
 

Bertani G (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62(3):293-300.

 
 

Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008). Corynebacterium glutamicum tailored for high-yield L-valine production. Appl. Microbiol. Biotechnol. 79(3):471-479.
Crossref

 
 

Cann AF, Liao JC (2010). Pentanol isomer synthesis in engineered microorganisms. Appl. Microbiol. Biotechnol. 85(4):893-899.
Crossref

 
 

Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP (2014). Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 80(4):1388-1393.
Crossref

 
 

Eggeling L, Bott M (2005). Handbook of Corynebacterium glutamicum. Taylor and Francis.
Crossref

 
 

Eggeling L, Morbach S, Sahm H (1997). The fruits of molecular physiology: engineering the l-isoleucine biosynthesis pathway in Corynebacterium glutamicum. J. Biotechnol. 56(3):167-182.
Crossref

 
 

Freund H, Dienstag J, Lehrich J, Yoshimura N, Bradford RR, Rosen H, Atamian S, Slemmer E, Holroyde J, Fischer JE (1982). Infusion of branched-chain enriched amino acid solution in patients with hepatic encephalopathy. Ann. Surg. 196(2):209-220.
Crossref15

 
 

Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M (2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 67(2):305-322.
Crossref

 
 

Garlick PJ (2005). The role of leucine in the regulation of protein metabolism. J. Nutr. 135(6 Suppl.):1553S-1556S.

 
 

Garvie EI (1980). Bacterial lactate dehydrogenase. Microbiol. Rev 44(1):106-139.

 
 

Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003). Acetate metabolism and its regulation in Corynebacterium glutamicum. J. Biotechnol. 104(1-3):99-122.
Crossref

 
 

Gluud LL, Dam G, Aagaard NK, Vilstrup H (2015). Branched Chain Amino Acids in Clinical Nutrition. Springer, New York. pp. 299-311.

 
 

Gluud LL, Gitte D, Mette B, Les I, Juan C, Giulio M, Aagaard NK, Niels R, Hendrik V (2013). Oral Branched-Chain Amino Acids Have a Beneficial Effect on Manifestations of Hepatic Encephalopathy in a Systematic Review with Meta-Analyses of Randomized Controlled Trials. J. Nutr. 143(8):1263-1268.
Crossref

 
 

Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013). Engineering of Corynebacterium glutamicum for High Yield L-Valine Production under Oxygen Deprivation Conditions. Appl. Environ. Microbiol. 79(4):1250-1257.
Crossref

 
 

Iris B, Nina J, Karina B, Hüser AT, Robert G, Eikmanns,BJ, Jörn K, Alfred P, Andreas T (2007). The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium giutamicum. J. Bacteriol. 189(7):2720-2733.
Crossref

 
 

Jan M, Nicole K, Hermann S, Lothar E (2005). Functional Analysis of All Aminotransferase Proteins Inferred from the Genome Sequence of Corynebacterium glutamicum. J. Bacteriol. 187(22):7639-7646.
Crossref

 
 

Kassing F, Kalinowski J, Arnold W, Winterfeldt A, Pühler A, Kautz PS, Thierbach G (1994). Method for the site-specific mutagenesis of DNA and development of plasmid vectors. Europe Patent, Degussa Aktiengesellschaft.

 
 

Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier Jr MH Jr, Eggeling L (2002). Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J. Bacteriol. 184(14):3947-3956.
Crossref

 
 

Kimball SR, Jefferson LS (2006). Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 136(1 Suppl.):227S-231S.

 
 

Kinoshita S, Udaka S, Shimono M (2004). Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 50(6):331-343.

 
 

Kohlhaw GB (1988). Alpha-isopropylmalate synthase from yeast. Methods Enzymol. 166:414-423.
Crossref

 
 

Kohlhaw GB (1988). Isopropylmalate dehydratase from yeast. Methods Enzymol. 166:423-429.
Crossref

 
 

Layman DK (2003). The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 133(1):261S-267S.

 
 

Leuchtenberger W (2008). Biotechnology: Products of Primary Metabolism. Wiley-VCH Verlag GmbH. Pp. 465-502.

 
 

Li H, Cann AF, Liao JC (2010). Biofuels: biomolecular engineering fundamentals and advances. Annu. Rev. Chem. Biomol. Eng. 1:19-36.
Crossref

 
 

Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991). Transfer of Brevibacterium divaricatum DSM 20297T, "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and Their Distinction by rRNA Gene Restriction Patterns. Int. J. Syst. Bacteriol. 41(2):255-260.
Crossref

 
 

Lothar E, Hermann S (2001). The Cell Wall Barrier of Corynebacterium glutamicum and Amino Acid Efflux. J. Biosci. Bioeng. 92(5):201-213.

 
 

Mangal S, Meiser F, Tan G, Gagenbach T, Denman J, Rowles MR, Larson I, Morton DA (2015). Relationship between surface concentration of L-leucine and bulk powder properties in spray dried formulations. Eur. J. Pharm. Biopharm. 94:160-169.
Crossref

 
 

Marienhagen J, Eggeling L (2008). Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl. Environ. Microbiol. 74(24):7457-7462.
Crossref

 
 

Nakayama K, Kitada S, Sato Z, Kinoshita S, Nakayama K, Kitada S, Sato Z, Kinoshita S (1961). Induction of nutritional mutants of glutamic acid bacteria and their amino acid accumulation. J. Gen. Appl. Microbiol. 7(1):41-51.
Crossref

 
 

Nayden K, Squire CJ, Baker EN (2004). Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis. Proc. Natl. Acad. Sci. USA. 101(22):8295-8300.
Crossref

 
 

Park JH, Lee SY (2010). Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl. Microbiol. Biotechnol. 85(3):491-506.
Crossref

 
 

Pátek M, Krumbach K, Eggeling L, Sahm H (1994). Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl. Environ. Microbiol. 60(1):133-140.

 
 

Platell C, Kong SE, McCauley R, Hall JC (2000). Branched-chain amino acids. J. Gastroenterol. Hepatol. 15(7):706-717.
Crossref

 
 

Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002). Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl. Environ. Microbiol. 68(5):2246-2250.
Crossref

 
 

Riedel C, Rittmann D, Dangel P, Möckel B, Petersen S, Sahm H, Eikmanns BJ (2001). Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J. Mol. Microbiol. Biotechnol. 3(4):573-583.

 
 

Sahm H, Eggeling L (1999). D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl. Environ. Microbiol. 65(5):1973-1979.

 
 

Sambrook JF, Russell. DW. (2001). Molecular Cloning: A Laboratory Manual (3rd edition). Cold Spring Harbor Laboratory Press.

 
 

Satoshi H, Kimio U, Yumi N, Masako S, Kazumi H, Toru J, Masayuki I, Hideaki Y (2012). Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 78(3):865-875.
Crossref

 
 

Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69-73.
Crossref

 
 

Scheele S, Oertel D, Bongaerts J, Evers S, Hellmuth H, Maurer KH, Bott M, Freudl R (2013). Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum. Microb. Biotechnol. 6(2):202-206.
Crossref

 
 

Shimizu S, Esumi A, Komaki R, Yamada H (1985). Production of Coenzyme A by a Mutant of Brevibacterium ammoniagenes Resistant to Oxypantetheine. Appl. Environ. Microbiol. 48(6):1118-1122.

 
 

Sorger-Herrmann U, Taniguchi H, Wendisch VF (2015). Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB. BMC Microbiol. 15(1):1-13.
Crossref

 
 

Tsuchida T, Momose H (1986). Improvement of an l -Leucine-Producing Mutant of Brevibacterium lactofermentum 2256 by Genetically Desensitizing It to alpha-Acetohydroxy Acid Synthetase. Appl. Environ. Microbiol. 51(5):1024-1027.

 
 

Tsuchida T, Yoshinaga F, Kubota K, Momose H, Okumura S (1974). Production of l-Leucine by a Mutant of Brevibacterium lactofermentum 2256. Agric. Biol. Chem. 38(10):1907-1911.

 
 

Udaka S (1960). Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 79(5):754-755.

 
 

Ulm EH, Bhme R, Kohlhaw G (1972). Alpha-isopropylmalate synthase from yeast: purification, kinetic studies, and effect of ligands on stability. J. Bacteriol. 110(3):1118-1126.

 
 

van der Rest ME, Lange C, Molenaar D (1999). A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52(4):541-545.
Crossref

 
 

Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014). Pushing product formation to its limit: Metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab. Eng. 22:40-52.
Crossref

 
 

Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, Xie X (2013). Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 171(1):20-30.
Crossref

 
 

Wieschalka S, Blombach B, Eikmanns BJ (2012). Engineering Corynebacterium glutamicum for the production of pyruvate. Appl. Microbiol. Biotechnol. 94(2):449-459.
Crossref

 
 

Wolfe AJ (2005). The acetate switch. Microbiol. Mol. Biol. Rev. 69(1):12-50.
Crossref

 
 

Woo HM, Park JB (2014). Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J. Biotechnol. 180(15):43-51.
Crossref

 
 

Yin L, Zhao J, Chen C, Hu X, Wang X (2014). Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum. Biotechnol. Bioprocess Eng. 19(1):132-142.
Crossref