African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12488

Full Length Research Paper

Biodegradation of phenol by free and immobilized Candida tropicalis NPD1401

Satish Kumar
  • Satish Kumar
  • Department of Biotechnology Engineering, Ambala College of Engineering and Applied Research, Devsthali, Ambala, India.
  • Google Scholar
Neeraj
  • Neeraj
  • Department of Biotechnology Engineering, Ambala College of Engineering and Applied Research, Devsthali, Ambala, India.
  • Google Scholar
Viraj Krishna Mishra
  • Viraj Krishna Mishra
  • Department of Biotechnology Engineering, Ambala College of Engineering and Applied Research, Devsthali, Ambala, India.
  • Google Scholar
Santosh Kr. Karn
  • Santosh Kr. Karn
  • Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science & Research, Balawala, Dehradun (UK), India.
  • Google Scholar


  •  Received: 20 January 2017
  •  Accepted: 29 March 2017
  •  Published: 17 January 2018

References

Adav SS, Chen MY, Lee DJ, Ren NQ (2007). Degradation of Phenol by Aerobic Granules and Isolated Yeast Candida tropicalis. Biotechnol. Bioeng. 96(5):844-852.
Crossref

 

Agarry SE, Durojaiye AO, Solomon BO (2008). Microbial degradation of phenols: A review. Int. J. Environ Pollut. 32:12-28.
Crossref

 
 

Ahmad MF, Haydar S, Quraishi TA (2013). Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int. Biodeterior. Biodegrad. 83:119-128.
Crossref

 
 

Al-Khalid T, El-Naas MH (2012). Aerobic Biodegradation of Phenols: A Comprehensive Review. Crit. Rev. Environ. Sci. Technol. 42:1631-1690.
Crossref

 
 

An HR, Park HJ, Kim ES (2001). Cloning and expression of thermophilic catechol 1,2 dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiol. Lett. 195:17-22.
Crossref

 
 

ASTDR- Agency for Toxic Substances and Disease Registry (2014). Medical Management Guidelines for Phenol. Available at: https://www.atsdr.cdc.gov/mmg/mmg.asp?id=144&tid=27.

 
 

Basak B, Bhunia B, Dey A (2014b). Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol biodegradation. Int. Biodeterior. Biodegrad. 93:107-117.
Crossref

 
 

Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A (2014a). Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environ. Sci. Pollut. Res. 21:1444-1454.
Crossref

 
 

Basha KM, Rajendran A, Thangavelu V (2010). Recent Advances in the Biodegradation of Phenol: A review. Asian J. Exp. Biol. Sci. 1:219-234.

 
 

Cai W, Li J, Zhang Z (2007). The characteristics and mechanisms of phenol biodegradation by Fusarium sp. J. Hazard. Mat. 148:38-42.
Crossref

 
 

Chang YH, Li CT, Chang MC, Shieh WK (1998). Batch phenol degradation by Candida tropicalis and its fusant. Biotechnol. Bioeng. 60:391-395.
Crossref

 
 

Chen KC, Lin YH, Chen WH, Liu YC (2002). Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme Microb. Technol. 31:490-497.
Crossref

 
 

Comte A, Christen P, Davidson S, Pophillat M, Lorquin J, Auria R, Simon G, Casalot L (2013). Biochemical, Transcriptional and Translational Evidences of the Phenol-meta-Degradation Pathway by the Hyperthermophilic Sulfolobus solfataricus 98/2. PLoS One 8(12):1-7.
Crossref

 
 

EPA (2007). Phenolics (Spectrophotometric, manual 4-AAP with Distillation), Environmental Protection Agency, Method-9065. Available at: 

View

 
 

EPA (2002). Toxicological Review of Phenol (CAS No. 108-95-2). EPA635/R-02/006., U.S. Environmental Protection Agency, Washington D.C.

 
 

Fell JW (1993). Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol. Mar. Biol. Biotechnol. 2:174-180.

 
 

Field AJ, Sierra-Alvarez R (2008). Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol. 7:211-241.
Crossref

 
 

Gerginovaa M, Zlatevab P, Penevaa N, Alexievaa Z (2014). Influence of phenolic substrates utilised by yeast Trichosporon cutaneum on the degradation kinetics. Biotechnol. Biotechnol. Equip. 28:33-37.
Crossref

 
 

Glish GL, Vachet RW (2003). The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov. 2:140-150.
Crossref

 
 

Homaei AA, Sariri R, Vianello F, Stevanato R (2013). Enzyme immobilization: an update. J. Chem. Biol. 6:185-205.
Crossref

 
 

Jiang HL, Tay ST, Maszenan AM, Tay JH (2006). Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol. Ecol. 57:182-191.
Crossref

 
 

Karn SK, Chakrabarty SK, Reddy MS (2010a). Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. Int. Biodeterior. Biodegrad. 64:609-613.
Crossref

 
 

Karn SK, Chakrabarty SK, Reddy MS (2010b). Pentachlorophenol degradation by Pseudomonas stutzeri CL7 in the secondary sludge of pulp and paper mill. J. Environ. Sci. 22:1608-1612.
Crossref

 
 

Karn SK, Chakrabarty SK, Reddy MS (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63-69.
Crossref

 
 

Karn SK, Eswari SJ, Rajput VD, Kumar S, Kumar A (2017). Simultaneous application of Vibrio sp. (SK1), biochar amendment and modeling for removal of pentachlorophenol (PCP) in the farmland soil. Environ. Eng. Sci. doi:10.1089/ees.2016.0456.
Crossref

 
 

Karn SK, Geetanjali (2014). Pentachlorophenol remediation by Enterobacter sp. SG1 isolated from industrial dump site. Pak. J. Biol. Sci. 17:388-394.
Crossref

 
 

Kimura M (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.
Crossref

 
 

Kumar S, Stecher G, Tamura K (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33:1870-18074.
Crossref

 
 

Lika K, Papadakis IA (2009). Modeling the biodegradation of phenolic compounds by microalgae. J. Sea Res. 62:135-146.
Crossref

 
 

Liu H, Yu QJ, Wang G, Cong FYY (2011). Biodegradation of phenol at high concentration by a novel yeast Trichosporon montevideense PHE1. Process Biochem. 46:678-1681.
Crossref

 
 

Long Y, Yang S, Xie Z, Cheng L (2014). Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8. Can. J. Microbiol. 60:585-591.
Crossref

 
 

Matsubara M, Lynch JM, De Leij FA (2006). A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme Microbiol. Technol. 39:1365-1372.
Crossref

 
 

Molva M (2004). Removal of Phenol from Industrial Wastewaters Using Lignitic Coals. Izmir Institute Technology, Izmir, Turkey. Available at: http://library.iyte.edu.tr/tezler/master/cevremuh/T000458.pdf.

 
 

Mulla SI, Talwar MP, Bagewadi ZK, Hoskeri RS, Ninnekar HZ (2013). Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere 90:1920-1924.
Crossref

 
 

Nair I, Jayachandran K, Shankar S (2008). Biodegradation of Phenol. Afr. J. Biotechnol. 7:4951-4958.

 
 

Palomo JM, Fernandez-Lorente G, Mateo C, Fuentes M, Guisan JM, Fernandez-Lafuente R (2002) Tetrahedron: Asymmetry 13:2653-2659.
Crossref

 
 

Pishgar R, Najafpour G, Neya BN, Mousavi N, Bakhshi Z (2011). Anaerobic Biodegradation of Phenol: Comparative Study of Free and Immobilized Growth. Iranica J. Eviron. Environ. 2:348-355.
Crossref

 
 

Qi Y, Zheng CL, Zhang YT (2012). Microbial degradation of nitrobenzene by immobilized cells of Micrococcus luteus. Adv. Mat. Res. 599:52-59.
Crossref

 
 

Radovich JM (1985). Mass transfer limitation in immobilized cells. Biotechnol. Adv. 3(1):1-12.
Crossref

 
 

Ramírez CJ, Ordaz NR, Urbina EC, Mayer JG (2001). Degradation kinetics of phenol by immobilized cells of Candida tropicalis in a fluidized bed reactor. World J. Microbiol. Biotechnol. 17:697-705.
Crossref

 
 

Rocha LL, deAguiar CR, Cavalcante RM, Nascimento RF, Martins SC, Santaella ST, Melo VM (2007). Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil. Mycopathologia 164:183-188.
Crossref

 
 

Santos JCS. Dos, Barbosa O, Ortiz C, Murcia AB, Rafael CR, Fernandez-Lafuente R (2015). Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem 7:2413-2432.
Crossref

 
 

Sivasubramanian S, Namasivayam SKR (2014). Optimization of Parameters for Phenol Degradation using Immobilized Candida Tropicalis SSK01 in Batch Reactor. J. Environ. Biol. 35:531-536.

 
 

Tuah MBP (2006). The Performance of Phenol Biodegradation by Candida tropicalis Retl-Cr1 using Batch and Fed-Batch Fermentation Techniques. Ph.D. Thesis, Universiti Teknologi Malaysia. Malaysia. http://eprints.utm.my/1306/.

 
 

Vilimkova L, Paca J, Kremlackova V, Jan P, Marie S (2008). Isolation of Cytoplasmic NADPH-Dependent Phenol Hydroxylase and Catechol-1,2 dioxygenase from Candida tropicalis Yeast. Interdiscipl. Toxicol. 1:225-230.
Crossref

 
 

Wang Jianhua, Xuanxuan Ma, Sujing Liu, Pengcheng Sun, Ping Fan, Chuanhai Xia (2012). Biodegradation of Phenol and 4-Chlorophenol by Candida tropicalis W1. Proc. Environ. Sci. 16:299-303.
Crossref

 
 

Wang Y, Tian Y, Han B, Zhaw HB, Bi JN, Cai BL (2007). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 19:222-225.
Crossref

 
 

Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H (2005). The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem. Eng. J. 24:243-247.
Crossref

 
 

Zhou J, Yu X, Ding C, Wang Z, Zhou Q, Pao H, Cai W (2011). Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. J. Environ. Sci. 23:22-30.
Crossref