African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Bioremediation potentials of sunflower and Pseudomonas species in soil contaminated with lead and zinc

Elizabeth Temitope Alori
  • Elizabeth Temitope Alori
  • Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria.
  • Google Scholar
Abiodun Joseph
  • Abiodun Joseph
  • Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria.
  • Google Scholar
Ojo Timothy Vincent Adebiyi
  • Ojo Timothy Vincent Adebiyi
  • Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria.
  • Google Scholar
Ajibola Patrick Aluko
  • Ajibola Patrick Aluko
  • Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria.
  • Google Scholar
Chidera Onyekankeya
  • Chidera Onyekankeya
  • Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria.
  • Google Scholar


  •  Received: 26 February 2018
  •  Accepted: 20 June 2018
  •  Published: 31 October 2018

References

Abioye OP, Ijah UJJ, Aransiola SA (2013). Remediation mechanisms of tropical plants for lead-contaminated environment, in: Gupta DK (Ed.), Plant-Based Remediation Processes, Soil Biology, Springer, Berlin, Germany pp. 59-77.
Crossref

 

Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010). Phytoremediation potentials of Sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in Soils Contaminated with Zinc and Lead Nitrates. Water Air Soil Pollution 207:195-201
Crossref

 
 

Alori ET (2015). Phytoremediation Using Microbial Community, In: A. A. Ansari, et al. (Eds.), Phytoremediation: Management of Environmental Contaminants, Springer International Publishing, Switzerland pp. 183-190.

 
 

Alori ET, Dare MO, Babalola OO (2017). Microbial inoculants for soil quality and plant fitness, in: Lichtfouse E. (Ed.), Sustainable Agriculture Review, springer pp. 181-308.
Crossref

 
 

Aransiola SA, Ijah UJJ, Abioye OP (2013). Phytoremediation of Lead Polluted Soil by Glycine max L. Applied and Environmental Soil Science pp. 1-7
Crossref

 
 

Bremner JM (1965). Total Nitrogen, in: C. A. Black (Ed.), Methods of soil analysis part 2, American Society of Agronomy Inc, Madison, Wisconsin, USA. pp. 1149-1178.

 
 

Chapman HD (1965). Cation exchange capacity, in: Black CA (Ed.), Methods of soil analysis part 2, American Society of Agronomy Inc, Madison Wisconsin USA. pp. 891-901.

 
 

Cui Y-J, Zhu Y-G, Zhaietal R-H (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International 30(6):785-791.
Crossref

 
 

Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015). Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes Sustainability 7:2189-2212.

 
 

Gee WG, Or D (2002). Particle size analysis, in: J. Dane and G. C. Topp (Eds.), Methods of soil Analysis, Soil Science Society of America pp. 253-293.

 
 

Kabata-Pendias A, Pendias H (1984). Trace elements in soil and plants. Boca:CRC.

 
 

Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). Journal Hazard Materials 122:7-15.
Crossref

 
 

Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001). A fern that accumulates arsenic. Nature 409:579
Crossref

 
 

Malik A (2004) Metal bioremediation through growing cells. Environment International 30:261-278.
Crossref

 
 

Murphy J, Riley JP (1962). Amodified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta. 27:31-36.
Crossref

 
 

Olanrewaju OS, Glick BR, Babalola OO (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33:197.
Crossref

 
 

Önder M, Ceyhan E, Kahraman A (2011). Effects of Agricultural Practices on Environment International Conference on Biology, Environment and Chemistry, IACSIT Press, Singapoore. pp. 28-32.

 
 

Shamshuddin J, Jamilah I, Ogunwale JA (1994). Organic carbon determination in acid sulphate soils. Pertanika 17:197-200.

 
 

Srivastava M, Ma LQ, Santos JAG (2006). Three new arsenic hyperaccumulating ferns. Sci. Total Environ 364:24-31. 
Crossref

 
 

Stamenov DR, Đurić SS, Hajnal-Jafari TI (2015). Bioremediation potential of five strains of Pseudomonas sp. Zbornik Matice srpske za prirodne nauke 128:41-46.

 
 

Subhashini V, Swamy AVVS (2013). Phytoremediation of Zinc Contaminated Soils by Physalis minima Linn. International Journal of Innovative Research in Science Engineering and Technology 2:4488-4492.

 
 

Usman ARA, Mohamed HM (2009). Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 76(7):893-899.
Crossref

 
 

Wei C-Y, Chen T-B (2006). Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 63:1048-1053.
Crossref

 
 

Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009). Bioaccumulation and phytotranslocation of arsenic, chromiumand zinc by Jatropha curcas L: impact of dairy sludge and biofertilizer. Bioresource Technology 100:4616-4622.
Crossref

 
 

Yusuf AA, Arowolo TA, Bamgbose O (2003). Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria. Food and Chemical Toxicology 41(3):375-378.
Crossref