African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

A study of the optimal conditions for glucoamylases obtained from Aspergillus niger using amylopectin from cassava starch as carbon source

Ezugwu, A. L.*
  • Ezugwu, A. L.*
  • Department of Biochemistry, University of Nigeria Nsukka, Enugu State, Nigeria.
  • Google Scholar
Eze, S. O. O.
  • Eze, S. O. O.
  • Department of Biochemistry, University of Nigeria Nsukka, Enugu State, Nigeria.
  • Google Scholar
Chilaka, F. C.
  • Chilaka, F. C.
  • Department of Biochemistry, University of Nigeria Nsukka, Enugu State, Nigeria.
  • Google Scholar


  •  Received: 15 July 2015
  •  Accepted: 02 September 2015
  •  Published: 24 September 2015

References

Agboola SO, Akingbala JO, Oguntimi GB (1990). Processing of cassava starch for adhesives production. Starch/Stakes. 42(1):12-15.

 

Alva S, Anupama J, Savla J, Chiu YY, Vyshali P, Shruti M, Yogeetha BS, Bhavya D, Purvi J, Ruchi K, Kumudini BS, Varalakshmi KN (2007). Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. Afr. J. Biotechnol. 6:576-581.

 
 

Aziz GM, Ali HM (2012). Purification and characterization of amylase from local isolate Pseudomonas sp. SPH4. J. Biotechnol. Res. Center 5(1):69-79.

 
 

Bagheri A, Khodarahmi R, Mostafaie A (2014). Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: Relation to starch processing. Food Chem. 161:270-278.
Crossref

 
 

Bernfield P (1955). Methods of Enzymology, Academic Press, New York. p. 149.

 
 

Betiku E (2010). Enzymatic hydrolysis of breadfruit starch: a case study with utilization for gluconic acid production. Ife J. Technol. 19(1):10-14.

 
 

Cereia M, Terenzi HF, Jorge JA, Greene LJ, Rosa JC, Polizeli MM (2000). Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. Biochemical and regulatory properties. J. Basic Microbiol. 40(2):83-92.
Crossref

 
 

Corbishley DA, Miller W (1984). Tapioca, Arrow Root and Sago Starches: Production. In: Starch Chemistry and Technology, Whistler, R.L., BeMiller, J.W. and Paschal, E.F. (Editons). Academic Press, New York. pp. 469-476.

 
 

Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SA (2013). Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2(154):1-12.
Crossref

 
 

Deshmukh KB, Taur SA, Cherekar MN, Kothari MN, Pathak AP (2011). Process optimization, purification and characterization of glucoamylase from different Sorghum varieties. J. Chem. Pharmacol. Res. 3(2):732-737.

 
 

El-Gendy MMA (2012). Production of Glucoamylase by Marine Endophytic Aspergillus sp. JAN-25 under optimized solid-state fermentation conditions on agro residues. Aust. J. Basic Appl. Sci. 6(4):41-54.

 
 

Jambhulkar V (2012). Effect of various metal ions on glucoamylase and citrate lyase activities of Rhizopus nigricans in production of lipids. Asiat. J. Biotechnol. Resour. 3(9):1134-1139.

 
 

Jebor MA, Zahra M, Ali ZM, Hassan BA (2014). Purification and characterization of the glucoamylase from Aspergillus niger. Int. J. Curr. Microbiol. Appl. Sci. 3(1): 63-75.

 
 

Kareem SO, Akpan I, Popoola TOS, Sanni LO (2014). Purification and characterization of thermostable glucoamylase from Rhizopus oligosporus SK5 mutant obtained through UV radiation and chemical mutagenesis. Int. J. Niger. Soc. Exp. Biol. 26 (1): 19–24.

 
 

Koç O, Metin K (2010). Purification and characterization of a thermostable glucoamylase produced by Aspergillus flavus HBF34. Afr. J. Biotechnol. 9(23): 3414-3424.

 
 

Kolusheva T, Marinova A (2007). A study of the optimal conditions for starch hydrolysis through thermostable α- amylase. J. Univ. Chem. Technol. Metall. 42(1):93-96.

 
 

Kumar MS, Lakshmi MVVC, Sridevi V (2013). Production and optimization of Glucoamylase from wheat bran by Aspergillus oryzae NCIM 1212 under Solid State Fermentation. Int. J. Appl. Innov. Eng. Manage. 2(10):318-323.

 
 

Lowry OH, Rosenbrough PJ, Fass AL, Randall RJ (1951). Protein measurement with Folin-phenol reagent. J. Biochem. 193:265-275.

 
 

Nahar S, Hossain F, Ferosa B, Hallm MA (2008). .Production of glucoamylase by Rhizopus in liquid culture. Pak. J. Bot. 40(4):1693-1698.

 
 

Nahid P, Vossoughi M, Roostaazad R, Ahmadi M (2012). Production of glucoamylase by Aspergillus niger under solid state fermentation. IJE Transactions B: Applications 25(1):1-7.
Crossref

 
 

Norouzian D, Akbarzadeh A, Scharer JM, Young MM (2006). Fungal glucoamylases. Biotechnol. Adv. 24: 80-85.
Crossref

 
 

Okoye IG, Ezugwu AL, Udenwobele DI, Eze SOO, Anyawu CU, Chilaka FC (2013). Production and Partial Characterization of Cellulases from Apergillus fumigatus Using Two Distinct Parts of Corn Cob as Carbon Sources. Niger. J. Biotechnol. 26:50-59.

 
 

Ozienbge EO, Onilude AA (2011). Production of a thermostable α-amylase and its assay using Bacillus licheniformsis isolated from excavated land sites in Ibadan, Nigeria. Bayero J. Pure Appl. Sci. 5(1):132-138.

 
 

Parbat R, Singhal B (2011). Production of Glucoamylase by Aspergillus oryzae UnderSolid State Fermentation Using Agro Industrial Products. Int. J. Microbiol. Res. 2 (3): 204-207.

 
 

Puri S, Arora M, Sarao L (2013). Production and optimization of amylase and glucoamylase using Aspergillus oryzae under solid state fermentation. Int. J. Res. Pure Appl. Microbiol. 3(3): 83-88.

 
 

Rangabhashiyam S, Sundari VV, Hemavathy RV, Sankaran K (2012). Consequence of copper ions on thermal stability of glucoamylase from Aspergillus niger. Int. J. Pharma Bio Sci. 2(2):365-371.

 
 

Sarojini R, Deepika K, Rangabhashiyam S (2012). Production, characterization, kinetic studies of glucoamylase through solidstate fermentation by Aspergillus niger using agricultural residues as substrate. Int. J. Curr. Res. 4(10):198-201.

 
 

Shenoy BC, Katwa LC, Appu Rao AG, Raghavendra Rao MR (1985). Fungal glucoamylases. J. Biosci. 7(3/4):399-419.
Crossref

 
 

Sobukola OP, Aboderin AT (2012). Studies on some properties of starches from three Mucuna species. Int. Food Res. J. 19(3): 913-921.

 
 

Svensson B, Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstori P (2000). Glucoamylase: Structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543: 275-293.
Crossref

 
 

Wang J, Wang L (2000). Structures and properties of commercial maltodextrins from corn, potato, and rice starches. Starch/Starke 52:296-304.
Crossref

 
 

Zambare V (2010). Solid State Fermentation of Aspergillus oryzae for Glucoamylase production on agro residues. Int. J. Life Sci. 4:16-25.
Crossref