African Journal of

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12353

Full Length Research Paper

Isolation and characterization of heavy metals resistant Rhizobium isolates from different governorates in Egypt

Khalid S. Abdel-lateif
  • Khalid S. Abdel-lateif
  • Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
  • Google Scholar

  •  Received: 07 February 2017
  •  Accepted: 07 March 2017
  •  Published: 29 March 2017


Alloway BJ, Trevors JT (2013). Heavy Metals in Soils-Trace Metals and Metalloids in Soils and their Bioavailability. New York: Springer Dordrecht Heidelberg.


Ausili P, Borisov A, Lindblad P, Martensson A (2002). Cadmium affect the interaction between peas and root nodule bacteria. Acta Agric. Scand. B Soil Plant Sci. 52:8-17.


Borremans B, Hobman JL, Provoost A, Brown NL, van der Lelie D (2001).Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol.19:5651-5658.


Carrasco JA, Armario P, Pajuelo E, Burgos A (2005). Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol. Biochem. 37:1131-1140.


Cervantes C, Gutierrez-Corona F (1994). Copper resistance mechanisms in bacteria and fungi. FEMS. Microbiol. Rev. 14:121-138.


Chaudri A, McGrath S, Gibbs P, Chambers B, Carlton-Smith C, Bacon J, Campbell C, Aitken M (2008). Population size of indigenous Rhizobium leguminosarum biovar trifoliiin long-term field experiments with sewage sludge cake, metal amended liquid sludge or metal salts: Effects of zinc, copper and cadmium. Soil Biol. Biochem. 40:1670-1680.


Dart P (1977). Infection and development of leguminous nodules. In. A Treatise on Di nitrogen Fixation, Section III: Biology ed. Hardy.


Dell'Amico E, Mazzocchi M, Cavalca L, Allievi L,Andreoni V (2008). Assessment of bacterial community structure in a long-term copper-polluted exvineyard soil. Microbiol. Res.163:671-683.


Gibson AH, Jordan DC (1983). Eco physiology of nitrogen fixing systems.In Physiological Plant Ecology III. Responses to the Chemical and Biological Environment ed. Lange, O.L., Nobel, P.S., Osmond, C.B. and Zeigler, H. Berlin: Springer-Verlag. Pp. 301-390.


Glick BR (2010). Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367-374.


Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2014). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355-377.


Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014). Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int. J. Phytoremediat. 16:179-202.


Khan M, Scullion J (2002). Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil microorganisms and their activities. Appl. Soil Ecol. 20:145-155.


Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002). Rhizobium leguminosarumbv. viciaepopulations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol. Biochem. 34:519-529.


Nies DH, Nies A, Chu L, Silver S (1989). Expression and nucleotide sequence of aplasmid determined divalent cation effux system from Alcaligeneseutrophus. Proc. Natl. Acad. Sci. 86:7351-7355.


Pereira SIA, Lima AIG, Figueira EMDAP (2006). Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy-metal contamination: effects on protein expression. Appl. Soil. Ecol. 33:286-293.


Shamseldin A, El-saadani M, Sadowsky MJ, An CS (2009). Rapid identification and discrimination among Egyptian genotypes of Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti nodulating faba bean (Vicia faba L.) by analysis of nodC, ARDRA, and rDNA sequence analysis. Soil Biol. Biochem. 41:45-53.


Shi W, Bischoff M, Turco R, Konopka A (2002).Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl. Soil Ecol. 21:169-177.


Sobti S, Belhadj HA, Djaghoubi A (2015). Isolation and Characterization of The Native RhizobiaUnder Hyper-Salt Edaphic Conditions in Ouargla (southeast Algeria); international Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES 15.Energy Procedia. 74:1434-1439.


Stan V, Gament E, Cornea CP, Voaides C, Dusa M, Plopeanu G (2011). Effects of heavy metal from polluted soils on the Rhizobium diversity. Not. Bot. Horti. Agrobot. Cluj. Napoca 39:88-95.


Teng Y, Wang X, Li L, Li Z, Luo Y (2015). Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front. Plant Sci. 6:32.


Trajanovska S, Britz ML, BhaveM (1997). Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113-124.


Valentín L, Nousiainen A, Mikkonen A (2013). Introduction to organic contaminants in soil: concepts and risks, In. Emerging Organic Contaminants in Sludges: The Handbook of Environmental Chemistry, eds A.G. Kostianoy and D. Barceló (Berlin, Heidelberg: Springer-Verlag). pp. 1-29.


Vincent JM (1970). A manual for the practical study of root nodule bacteria. IBP Handbook No.15, Blackwell Scientific Publications.


Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009).Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2isolated from root nodule of Lespedeza cuneatain gold mine tailings in China. J. Hazard. Mater.162:50-56.