African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Identification and characterization of putative conserved IAM-hydrolases in developing rice grains

Yousef M. Abu-Zaitoon
  • Yousef M. Abu-Zaitoon
  • Department of Biology, Faculty of science, Al-Ghad College in Madinah, Saudi Arabia.
  • Google Scholar


  •  Received: 14 February 2014
  •  Accepted: 28 November 2014
  •  Published: 07 January 2015

References

Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM (2012). A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol. Plant. 146(4):487-499.
Crossref
 
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
Crossref
 
Arai Y, Kawaguchi M, Syono K, Ikuta A (2004). Partial purification of an enzyme hydrolyzing indole-3-acetamide from rice cells. J. Plant Res. 117:191-198.
Crossref
 
Bar T, Okon Y (1993). Tryptophan conversion to indole-3-acetic-acid via indole-3-acetamide in Azospirillum-brasilense Sp7. Can. J. Microbiol. 39(1):81-86.
Crossref
 
Bel MV, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Peer YVd, Vandepoele K (2012). Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158:590-600.
Crossref
 
Bombarely A, Menda N, Tecle I, Buels R, Strickler S, Fischer-York T, et al. (2011). The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res. 39:D1149-D1155
Crossref
 
Chevenet F, Brun C, Banuls AL, Jacq B, Chisten R (2006). TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439.
Crossref
 
Chew O, Lister R, Qbadou S, Heazlewood J, Soll J, Schleiff E, et al. (2004). A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557(1-3):109-114.
Crossref
 
Dereeper A, Audic S, Claverie JM, GB (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10:8.
Crossref
 
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36(Web Server issue):W465-469.
 
Edgar RC (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.
Crossref
 
Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792-1797.
Crossref
 
Felsenstein J (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17(6):368-376.
Crossref
 
Fitch WM (1971). Toward defining the course of evolution - minimum change for a specific tree topology. Syst. Zool. (20):406-416.
Crossref
 
Fitch WM (1981). A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18(1):30-37.
Crossref
 
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 59(3):307-321.
Crossref
 
Guindon S, Gascuel OA (2003). simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5):696-704.
Crossref
 
Hofmann NR, Theg SM (2003). Physcomitrella patens as a model for the study of chloroplast protein transport: conserved machineries between vascular and non-vascular plants. Plant Mol. Biol. 53(5): 643-654
Crossref
 
Inze D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M, Schell J (1984). Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol. Gen. Genet. 194(1):265-274.
Crossref
 
Kawaguchi M, Fujioka S, Sakurai A, Yamaki YT, Syono K (1993). Presence of a Pathway for the Biosynthesis of Auxin via Indole-3-Acetamide in Trifoliata Orange. Plant Cell Physiol. 34(1):121-128. .
 
Kawaguchi M, Kobayashi M, Sakurai A, Syono K (1991). The Presence of an Enzyme that Converts IndoIe-3-acetamide into IAA in Wild and Cultivated Rice. Plant Cell Physiol. 32(2):143-149.
 
Kobayashi M, Sakurai A, Saka H, Takahashi N (1989). Fluctuation of the endogenous IAA level in rice during its life cycle. Agric. Biol. Chem. 53:1089-1094.
Crossref
 
Magie AR, Wilson EE, Kosuge T (1963). Indoleacetamide as an Intermediate in the Synthesis of Indoleacetic Acid in Pseudomonas savastanoi. Science 141(3587): 1281-1282.
Crossref
 
Manulis S, Haviv-Chesner A, Brandl M, Lindow S, Barash I (1998). Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol. Plant Microbe Interact. 11:634-642.
Crossref
 
Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994). Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140(5):1045-1050.
Crossref
 
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, et al. (2011). The main auxin biosynthesis pathway in Arabidopsis. PNAS 108(45):18512-18517.
Crossref
 
Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007). Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19(6):2039-2052.
Crossref
 
Nemoto K, Hara M, Suzuki M, Seki H, Muranaka T, Mano Y (2009). The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Lett. 583:487-492.
Crossref
 
Nolan T, Hands RE, Bustin SA (2006). Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1(3):1559-1582.
Crossref
 
Normanly J, Grisafi P, Fink G, Bartel B (1997). Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9(10):1781-1790.
Crossref
 
Page RDM (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12:357-358.
 
Patten CL, Glick BR (1996). Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42(3):207-220.
Crossref
 
Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C (2011). Vanishing tassel2 Encodes a Grass-Specific Tryptophan Aminotransferase Required for Vegetative and Reproductive Development in Maize. Plant Cell 23:550-566
Crossref
 
Pollmann S, Düchting P, Weiler E (2009). Tryptophan-dependent indole-3-acetic acid biosynthesis by IAA-synthase proceeds via indole-3-acetamide. Phytochemistry 70(4):523-531.
Crossref
 
Pollmann S, Muller A, Piotrowski M, Weiler EW (2002). Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta 216(1):155-161.
Crossref
 
Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, Weiler EW (2006). Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta 224:1241-1253.
Crossref
 
Pollmann S, Neu D, Weiler E (2003) . Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62(3):293-300.
Crossref
 
Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009). PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21: 3718-3731.
Crossref
 
QIAGEN (2002). QIAGEN OneStep RT-PCR Kit Handbook.
 

Rozen SaS HJ (1998). Primer3, from

View

 
Sambrook J, Russell DW (2001). Preparation and Analysis of Eukaryotic Genomic DNA (third edition ed. Vol. 1). New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
 
Saotome M, Shirahata K, Nishimura R, Yahaba M, Kawaguchi M, Syono K (1993). The Identification of Indole-3-Acetic Acid and Indole-3-Acetamide in the Hypocotyls of Japanese Cherry. Plant Cell Physiol. 34(1):157-159.
 
Sekine M, Watanabe K, Syono K (1989). Molecular Cloning of a Gene for Indole-3-Acetamide Hydrolase from Bradyrhizobium japonicum. J. Bacteriol. 171(3):1718-1724.
 
Shin S, Yun Y, Koo H, Kim Y, Choi K, Oh B (2003). Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad. J. Biol. Chem. 278(27):24937-24943.
Crossref
 
Shrestha R, Dixon RA, Chapman KD (2003). Molecular Identification of a Functional Homologue of the Mammalian Fatty Acid Amide Hydrolase in Arabidopsis thaliana. J. Biol. Chem. 278: 34990-34997.
Crossref
 
Stepanova A, Robertson-Hoyt J, Yun J, Benavente L, Xie D, Dolezal K (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177-191.
Crossref
 
Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T(2009). Biochemical analyses of indole-3-acetaldoximedependent auxin biosynthesis in Arabidopsis. P. Natl. A. Acad. Sci. USA. 106(13):5430-5435.
Crossref
 
Takahashi N, Yamaguchi I, Kono T, Igoshil M, Hirose K, Suzuki K (1975). Characterization of plant growth substances in Citrus unshiu and their change in fruit development. Plant Cell Physiol. 16:1101-1111.
 
Tao Y, Ferrer J, Ljung K, Pojer F, Hong F, Long J (2008). Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164-176.
Crossref
 
Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004). Flavonoids, NodD1, NodD2, and Nod-Box NB15 Modulate Expression of the y4wEFG Locus That Is Required for Indole-3-Acetic Acid Synthesis in Rhizobium sp. strain NGR234. Mol. Plant Microbe Interact. 17(10): 1153-1161.
Crossref
 
Won C, Shen X, Mashiguchi K, Zheng Z, Daia X, Cheng Y (2011). Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. PNAS 108(45):18518-18523.
Crossref
 
Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009). The TRANSPORT INHIBITOR RESPONSE2 Gene Is Required for Auxin Synthesis and Diverse Aspects of Plant Development. Plant Physiol. 151:168-179.
Crossref
 
Zhao YD, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16(23):3100-3112.
Crossref