African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12267

Full Length Research Paper

Screening of exopolysaccharide-producing coccal lactic acid bacteria isolated from camel milk and red meat of Algeria

Imène Kersani
  • Imène Kersani
  • Laboratory of Biology of Microorganisms and Biotechnology, University of Oran1 Ahmed Ben Bella, Oran, Algeria.
  • Google Scholar
Halima Zadi-Karam
  • Halima Zadi-Karam
  • Laboratory of Biology of Microorganisms and Biotechnology, University of Oran1 Ahmed Ben Bella, Oran, Algeria.
  • Google Scholar
Nour-Eddine Karam
  • Nour-Eddine Karam
  • Laboratory of Biology of Microorganisms and Biotechnology, University of Oran1 Ahmed Ben Bella, Oran, Algeria.
  • Google Scholar


  •  Received: 21 January 2017
  •  Accepted: 29 March 2017
  •  Published: 03 May 2017

References

Badel S, Bernardi T, Michaud P (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 29:54-66.
Crossref

 

Behare PV, Singh R, Kumar M, Prajapati JB, Singh RP (2009a). Exopolysaccharides of lactic acid bacteria. J. Food. Sci. Technol. 46:1-11.

 
 

Behare PV, Singh R, Nagpal R, Kumar M, Tomar SK, Prajapati JB (2009c). Comparative effect of exopolysaccharides produced in situ or added as bioingredients on dahi properties. Milchwissenschaft. 64:396-400.

 
 

Behare PV, Singh R, Singh RP (2009b). Exopolysaccharide-producing mestophilic lactic cultures for preparation of fat-free dahi-An Indian fermented milk. J. Dairy. Res. 76:90-97.
Crossref

 
 

Behare PV, Singh R, Tomar SK, Nagpal R, Kumar M, Mohania D (2010). Effect of exopolysaccharide-producing strains of Streptococcus thermophilus on technological attributes of fat-free lassi. J. Dairy Sci. 93:2874-2879.
Crossref

 
 

Borucki MK, Peppin JD, White D, Loge F, Call DR (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Appl. Environ. Microbiol. 69:7336-7342.
Crossref

 
 

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254.
Crossref

 
 

Cerning J (1990). Exocellular polysaccharide produced by lactic acid bacteria. FEMS. Microbiol. Rev. 87:113-130.
Crossref

 
 

Cerning J (1995). Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Dairy Sci. Technol. 75:463-472.
Crossref

 
 

Cerning J, Bouillanne C, Desmazeaud MJ, Landon M (1986). Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8:625-628.
Crossref

 
 

Cerning J, Bouillanne C, Desmazeaud MJ, Landon M (1988). Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol. Lett. 10:255-260.
Crossref

 
 

Cerning J, Renard CMGC, Thibault JF, Bouillanne C, Landon M, Desmazeaud M, Topisirovic L (1994). Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60:3914-3919.

 
 

Dabour N, LaPointe G (2005). Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl. Environ. Microbiol. 71(11):7414-7425.
Crossref

 
 

Dave RI, Shah NP (1996). Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacteria. J. Dairy Sci. 79:1529-1536.
Crossref

 
 

De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11:687-707.
Crossref

 
 

De Vuyst L, Degeest B (1999). Heteropolysaccharides from lactic acid bacteria. FEMS. Microbiol.Rev.23:157-177.
Crossref

 
 

De Vuyst L, Vanderverken F, Van de Van S, Degeest B (1998). Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J. Appl. Microbiol. 84:1059-1068.
Crossref

 
 

De Vuyst L, Zamfir M, Mozzi F, Adriany T, Marshall V, Degeest B, Vaningelgem F (2003). Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. Int. Dairy. J.13:707-717.
Crossref

 
 

Degeest B, De Vuyst L (1999). Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl. Environ. Microbiol. 65:2863-28707.

 
 

Degeest B, De Vuyst L (2000). Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl. Environ. Microbiol. 66:3519-3527.
Crossref

 
 

Degeest B, Janssens B, De Vuyst L (2001a). Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: production kinetics, enzyme activities and EPS yields. J. Appl. Microbiol. 67:470-477.
Crossref

 
 

Degeest B, Mozzi F, De Vuyst L (2002). Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int. J. Food. Microbiol. 79:161-174.
Crossref

 
 

Degeest B, Vaningelgem F, Laws AP, De Vuyst L (2001b). UDP-N-acetylglucosamine 4-epimerase activity indicates the presence of N-acetylgalactosamine in exopolysaccharides of Streptococcus thermophilus strains. Appl. Environ. Microbiol. 67:3976-3984.
Crossref

 
 

Dierksen KP, Sandine WE, Tremp JE (1997). Expression of ropy and mucoid phenotypes in Lactococcus lactis. J. Dairy Sci. 80:1528-1536.
Crossref

 
 

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.
Crossref

 
 

Dupont I (1998). Identification moléculaire de souches de lactobacilles productrices d'exopolysaccharides et comparaison de la production d'exopolysaccharides par trois de ces souches (deux Lactobacillus rhamnosus et un Lactobacillus casei). Thèse de doctorat, Université Laval.

 
 

Frengova GI, Simova ED, Beshkova DM, Simov ZI (2000). Production and monomer composition of exopolysaccharides by yogurt starter cultures. Can. J. Microbiol. 46:1123-1127.
Crossref

 
 

Gancel F, Novel G (1994). Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures 1: Conditions of production. J. Dairy Sci.77:685-688.
Crossref

 
 

Gancel F, Novel G, Ramos P, Carcano D, Loones A, Ramos P(1988). Selection procedure for bacterial exopolysaccharide-producing clones. (In French) Fr. Pat. 88, 08009.

 
 

Gentès MC, St-Gelais D, Turgeon S (2011). Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Sci. Technol. 91(5):645-661.
Crossref

 
 

German B, Schiffrin E, Reniero R, Mollet B, Pfeifer A, Neeser JR (1999). The development of functional foods: Lessons from the gut. Trends Biotechnol. 7:492-499.
Crossref

 
 

Grosu-Tudor S, Zamfir M (2011). Isolation and characterization of lactic acid bacteria from Romanian fermented vegetable. Rom. Biotechnol. Lett. 16(6):148-154.

 
 

Guzel-Seydim ZB, Sezgin E, Seydin AC (2005). Influences of exopolysaccharide producing cultures on the quality of plain set type yogurt. Food Control 16:205-209.
Crossref

 
 

Han X, Yang Z, Jing X, Yu P, Zhang Y, Yi H, Zhang L (2016). Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid Bacteria. Biomed. Res. Int. 7945675:2314-6133.
Crossref

 
 

Ismail B, Nampoothiri KM (2010). Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch. Microbiol.192:1049-1057.
Crossref

 
 

Iwański RZ, Wianecki M, Dmytrów I, Krzysztof K (2012). Effect of fermentation reactions on rheological properties of foods: Fermentation, effects on food properties. Boca Raton, Florida, USA: CRC Press, Taylor and Francis Group. pp. 90-109.

 
 

Khurana H, Kanawjia SK (2007). Recent trends in development of fermented milks. Curr. Nutr. Food Sci. 3:91-108.
Crossref

 
 

Kimmel SA, Roberts RF, Ziegler GR (1998).Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl. Environ. Microbiol. 64:659-664.

 
 

Kumar AS, Mody K, Jha B (2007). Bacterial exopolysaccharides: A perception. J. Basic Microbiol. 47:103-117.
Crossref

 
 

Laws AP, Marshall VM (2001). The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int. Dairy J. 11:709-721.
Crossref

 
 

Leroy F, De Vuyst L (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food. Sci. Technol. 15:67-78.
Crossref

 
 

Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H (2014). Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J. Dairy Sci. 97(12):7334-7343.
Crossref

 
 

Ludbrook KA, Russell CM, Greig RI (1997). Exopolysaccharide production from lactic acid bacteria isolated from fermented foods. J. Food Sci. 62:597-600.
Crossref

 
 

Lule VK, Singh R, Pophaly SD, Tomar SK (20 16). Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA08 in Whey. Int. J. Dairy Technol. 69:520-531.
Crossref

 
 

Mayeux JV, Sandine WE, Elliker PR (1962).A selective medium for detecting Leuconostoc in mixed-strain starter cultures. J. Dairy Sci. 45:655-656.

 
 

Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M (2001). Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11:675-685.
Crossref

 
 

Mora D, Fortina MG, Parini C, Ricci G, Gatti M, Giraffa G, Manachini PL (2002). Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products. J. Appl. Microbiol. 93:278-287.
Crossref

 
 

Morishita T, Deguchi Y, Yajima M, Sakurai T, Yura T (1981). Multiple nutritional requirements of lactobacilli: Genetic lesions affecting amino acid biosynthesis pathways. J. Bacteriol. 48(1):64-71.

 
 

Nagaoka M, Hashimoto S, Watanabe T, Yokokura T, Mori Y(1994). Anti-ulcer effects of lactic acid bacteria and their cell-wall polysaccharides. Biol. Pharm. Bull. 17:1012-1017.
Crossref

 
 

Petry S, Furlana S, Waghornec E, Saulnierd L, Cerning J, Maguin E (2003). Comparison of the thickening properties of four Lactobacillus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides. FEMS Microbiol. Lett. 221:285-291.
Crossref

 
 

Pigeon RM, Cuesta EP, Gilliland SE (2002). Binding of free bile acids by cells of yogurt starter culture bacteria. J. Dairy Sci. 85:2705-2710.
Crossref

 
 

Prouty AM, Schwesinger WH, Gunn J S (2002). Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70:2640-2649.
Crossref

 
 

Raposo DJ, Filomena M, Morais AMMB, Morais RMSC (2014). Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci. 101:56-63.
Crossref

 
 

Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS (2013). Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr. Polym. 91:22-32.
Crossref

 
 

Ricciardi A, Parente E, Clementi F (1997). Exopolysaccharide production in a whey based medium by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in pure culture and in association. An. Microbiol. Enzym. 47:213-222.

 
 

Ruas-Madiedo P, de los Reyes-Gavilan CG (2005). Invited Review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88(3):843-856.
Crossref

 
 

Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P (2002). Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12:689-695.
Crossref

 
 

Samelis J, Maurogenakis F, Metaxopoulos J (1994). Characterization of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int. J. Food Microbiol. 23:179-196.
Crossref

 
 

Smitinont T, Tansakul C, Tanasupawat S, Keeratipibul S, Navarini L, Bosco M, Cescutti P (1999). Exopolysaccharide producing lactic acid bacteria strains from traditional Thai fermented foods: Isolation, identification and exopolysaccharides characterization. Int. J. Food Microbiol. 51:105-111.
Crossref

 
 

Stingele F, Neeser JR, Mollet B (1996). Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178:1680-1690.
Crossref

 
 

Sutherland IW (1972). Bacterial exopolysaccharides. Adv. Microbiol. Physiol. 8:143-212.
Crossref

 
 

Terzaghi BE, Sandine WE (1975). Improved medium for lactic steptococci and their bacteriophages. Appl. Environ. Microbiol. 29:807-813.

 
 

Torino MI, Font de Valdez G, Mozzi F (2015). Biopolymers from lactic acid bacteria: Novel applications in foods and beverages. Front. Microbiol. 6:834.
Crossref

 
 

Torino MI, Taranto MP, Sesma F, Font de Valdez G (2001). Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus 15807 in response to environmental pH. J. Appl. Microbiol. 91:846-852.
Crossref

 
 

van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamering JD, Vliegenthart JFG, Ledeboer AM, Verrips CT (1995). Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61:2840-2844.

 
 

van den Berg DJC, Smits A, Pot B, Ledeboer AM, Kersters K, Verbakel JMA, Verrips CT (1993). Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnol. 7:189-205.
Crossref

 
 

Van der Meulen R, Grosu-Tudor SS, Mozzi F, Vaningelgem F, Zamfir M, De Valdez GF, De Vuyst L (2007). Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int. J. Food Microbiol. 118:250-258.
Crossref

 
 

Van Geel-Schutten GH, Faber EJ, Smit E, Bonting K, Smith MR, Ten Brink B, Kamerling JP, Vliegenthart JFG, Dijkhuizen L (1999). Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiol. 65:3008-3014.

 
 

Van Marle ME, Zoon P (1995). Permeability and rheological properties of microbially and chemically acidified skim-milk gels. Neth. Milk Dairy J. 49:47-65.

 
 

Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M, Swings J, De Vuyst L (2004). Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol. 70:900-912.
Crossref

 
 

Vescovo M, Scolari GL, Bottazzi V (1989). Plasmid-encoded ropiness production in Lactobacillus casei spp. casei. Biotechnol. Lett. 10:709-712.
Crossref

 
 

Welman AD, Maddox IS, Archer RH (2003). Screening and selection of exopolysaccharides-producting strains of Lactobacillus delbrueckii subsp. bulgaricus. J. Appl. Microbiol. 95:1200-1206.
Crossref

 
 

Yoo SH, Yoon EJ, Cha E, Lee HG (2004). Antitumor activity of levan polysaccharides from selected microorganisms. Int. J. Biol. Macromol. 34:37-41.
Crossref

 
 

Zhang T, Zhang C, Li S, Zhang Y, Yang Z (2001). Growth and exopolysaccharide production by Streptococcus thermophilus ST1 in skim milk. Braz. J. Microbiol. 42(4):1470-1478.
Crossref

 
 

Zisu B, Shah NP (2003). Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J. Dairy Sci. 86:3405-3415.
Crossref