African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12300

Full Length Research Paper

Production of polyhydroxybutyrate (PHB) and biofilm by Azospirillum brasilense aiming at the development of liquid inoculants with high performance

Mariana Sanches Santos
  • Mariana Sanches Santos
  • Embrapa Soja, C. P. 231, 86001-970, Londrina, Paraná, Brazil.
  • Google Scholar
Mariangela Hungria
  • Mariangela Hungria
  • Embrapa Soja, C. P. 231, 86001-970, Londrina, Paraná, Brazil.
  • Google Scholar
Marco Antonio Nogueira
  • Marco Antonio Nogueira
  • Embrapa Soja, C. P. 231, 86001-970, Londrina, Paraná, Brazil.
  • Google Scholar


  •  Received: 22 July 2017
  •  Accepted: 06 September 2017
  •  Published: 13 September 2017

References

Bashan Y, de-Bashan LE (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth- a critical assessment. Adv. Agron. 108:77-136.
Crossref

 

Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 378:1-33.
Crossref

 
 

Belal EB (2013). Production of Poly-hydroxybutyric acid (PHB) by Rhizobium etli and Pseudomonas stutzeri. Curr. Res. J. Biol. Sci. 5:273-284.

 
 

Belal EB, Farid MA (2016). Production of Poly-β-hydroxybutyric acid (PHB) by Bacillus cereus. Int. J. Curr. Microbiol. Appl. Sci. 5:442-460.
Crossref

 
 

Bhat SG, Subin RS (2015). Bacterial polyhydroxyalkanoates production and its applications. In. Bhat SG, Nambisan P (eds.), Microbial Bioproducts. Directorate of Public Relation and Publication, Kerala, India. pp. 70-96.

 
 

Boyer M, Wisniewski-Dyé F (2009). Cell-cell signalling in bacteria: Not simply a matter of quorum. FEMS Microbiol. Ecol. 70:1-19.
Crossref

 
 

Burdman S, Jurkevitch E, Shwartsburd B, Hampel M, Okon Y (1998). Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144:1989-1999.
Crossref

 
 

Burdman S, Jurkevitch E, Soria-Diaz ME, Serrano AMG, Okon Y (2000). Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol. Lett. 189:259-264.
Crossref

 
 

Cassán F, Diaz-Zorita M (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 103:117-130.
Crossref

 
 

Compant S, Cle’Ment C, Sessitsch A (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669-678.
Crossref

 
 

Costerton JW (1995). Overview of microbial biofilms. J. Ind. Microbiol. 15:137-40.
Crossref

 
 

Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22:996-1006.

 
 

Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001). Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol. 28:871-879.

 
 

Döbereiner J (1991). The genera Azospirillum and Herbaspirillum. In. Ballows A, Trüper HG, Dworkin M, Harder W, Shleifer K, (eds.), The Prokaryotes. Springer-Verlag, New York. pp. 2236-2253.

 
 

Donlan RM, Costerton JW (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167-193.
Crossref

 
 

Fallik E, Okon Y (1996). Inoculants of Azospirillum brasilense: Biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol. Biochem. 28:123-126.
Crossref

 
 

Fukami J, Abrantes JLF, del Cerro P, Nogueira MA, Megías M, Ollero FJ, Hungria M (2017a). Revealing different strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Arch. Microbiol.

 
 

Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6(3):1-13.
Crossref

 
 

Fukami J, Ollero FJ, Megías M, Hungria M (2017b). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7:153.
Crossref

 
 

Hartmann A, Bashan Y (2009). Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB). Eur. J. Soil Biol. 45:1-2.
Crossref

 
 

Hawas LME, El-Banna TE, Belal EBA, El-Aziz AA (2016). Production of bioplastic from some selected bacterial strains. Int. J. Curr. Microbiol. Appl. Sci. 5:10-22.
Crossref

 
 

Hungria M (2011). Inoculação com Azospirillum brasilense: Inovação em Rendimento a Baixo Custo. Documentos, 325, Embrapa Soja, Londrina, Brazil, 37p.

 
 

Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413-425.
Crossref

 
 

Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH (2005). Inoculant preparation, production and application. In. Werner W. Newton WE (eds.), Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment. Springer, Dordrecht, Amsterdam. Pp. 223-254.
Crossref

 
 

Hungria M, Mendes IC, Mercante FM (2013a). A Fixação Biológica do Nitrogênio como Tecnologia de Baixa Emissão de Carbono: Avaliação nas Culturas do Feijoeiro e da Soja. Documentos, 337, Embrapa Soja, Londrina, Brazil, 22p.

 
 

Hungria M, Nogueira MA, Araujo RS (2013b). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biol. Fertil. Soils 49(7):791-801.
Crossref

 
 

Hungria M, Nogueira MA, Araujo RS (2015). Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. Am. J. Plant Sci. 6:811-817.
Crossref

 
 

Hungria M, Nogueira MA, Araujo RS (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agric. Ecosyst. Environ. 221:125-131.
Crossref

 
 

Jayasinghearachchi HS, Seneviratne GA (2004). A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol. Fertil. Soils 40:432-434.
Crossref

 
 

Joe MM, Sivakumaar PK (2009). Role of certain cationic compounds on the enhancement of flocculation in Azospirillum brasilense MTCC-125: Bioinoculation effect on growth of sunflower. Die Bodenkultur: J. Land Manag. Food Environ. 60:5-13.

 
 

Kadouri D, Jurkevitch E, Okon Y (2003). Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl. Environ. Microbiol. 69:3244-3250.
Crossref

 
 

Kamnev AA, Tugarova AV, Tarantilis PA, Gardiner PHE (2012). Comparing poly-3-hydroxybutytateaccumulation in Azospirillum brasilense strains Sp7 and Sp245: The effect of copper (II). Appl. Soil Ecol. 61:213-216.
Crossref

 
 

Karivaradharajan S, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur. J. Soil Biol. 55:107-116.
Crossref

 
 

Karr DB, Waters JK, Emerich DW (1983). Analysis of Poly-,3-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection. Appl. Environ. Microbiol. 46:1339-1344.

 
 

Kreft JU (2004). Biofilms promote altruism. Microbiology 150:2751-2760.
Crossref

 
 

Law JH, Slepecky RA (1960). Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82:33-36.

 
 

Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agricultrue development. Environ. Sci. Pollut. Res. 24:3315-3335.
Crossref

 
 

Malusá E, Sas-Paszt L, Ciesielska J (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J 2012:1-12.
Crossref

 
 

Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M (2015). Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express 5:71.
Crossref

 
 

Morris CE, Monier JM (2003). The ecology significance of biofilm formation by plant-associeted bacteria. Annu. Rev. Phytophatol. 41:429-453.
Crossref

 
 

Mugnier J, Jung G (1985). Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer. Appl. Environ. Microbiol. 50:108-114.

 
 

O’Callaghan M (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100:5729-5746.
Crossref

 
 

O'Toole G, Kaplan HB, Kolter R (2000). Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:49-79.
Crossref

 
 

Okon Y, Itzigsohn R (1995). The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol. Adv. 13:415-424.
Crossref

 
 

Okon Y, Labandera-Gonzales C, Lage M, Lage P (2015). Agronomic applications of Azospirillum and other PGPR. In. de Brujin FJ (eds.), Biological Nitrogen Fixation. John Wiley and Sons Inc., Hoboken. Pp. 921-933.

 
 

Okon Y, Labandera-Gonzalez C (1994). Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation Soil Biol. Biochem. 26:1591-1601.
Crossref

 
 

Orme-o-Orrillo E, Hungria M, Martínez-Romero E (2013). Dinitrogen-fixing prokaryotes. In. Rosemberg E, De Long EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes - Prokaryotic Physiology and Biochemistry. Springer-Verlag, Berlin Heidelberg. pp. 427-451.

 
 

Pereg L, de-Bashan LE, Bashan Y (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389-414.
Crossref

 
 

Ratcliff WC, Kadam SV, Denison RF (2008). Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol. Ecol. 65:391-399.
Crossref

 
 

Sá JCM, Lal R, Cerri CC, Lorenz K, Hungria M, Carvalho PCC (2017). Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ. Int. 98:102-112.
Crossref

 
 

Sadasivan L, Neyra CA (1985). Flocculation in Azospirillum brasilense and Azospirillum lipoferum: Exopolysaccharides and cyst formation. J. Bacteriol. 163:716-723.

 
 

Santi C, Bogusz D, Franche C (2013). Biological nitrogen fixation in non-legume plants. Ann. Bot. 111:743-767.
Crossref

 
 

Santos MS (2017). Desenvolvimento de novas formulações de inoculantes líquidos para Azospirillum brasilense estirpes Ab-V5 e Ab-V6. Thesis. Londrina, Brasil: Universidade Estadual de Londrina.

 
 

Souza RD, Ambrosini A, Passaglia LM (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38:401-19.
Crossref

 
 

Stephens JHG, Rask H (2000). Inoculant production and formulation. Field Crops Res. 65:249-258.
Crossref

 
 

Tal S, Okon Y (1985). Production of the reserve material polybetahydroxybutyrate and its function in Azospirllum brasilense Cd. Can. J. Microbiol. 31:608-613.
Crossref

 
 

Tittabutr P, Payakapong W, Teaumroonga N, Singletonb PW, Boonkerda N (2007). Growth, survival and field performance of bradyrhizobial liquid inoculants formulations with polymeric additives. Sci. Asia 33:69-77.
Crossref

 
 

Trujillo-Roldán MA, Valdez-Cruz NA, Gonzalez-Monterrubio CF, Acevedo-Sánchez EV, Martínez-Salinas C, García-Cabrera RI, Gamboa-Suasnavart RA, Marín-Palacio LD, Villegas J, Blancas-Cabrera A (2013). Scale-up from shake flasks to pilot scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Appl. Microbiol. Biotechnol. 97:9665-9674.
Crossref

 
 

Vendan RT, Thangaraju M (2007). Development and standardization of cyst based liquid formulation of Azospirillum bioinoculant. Acta Microbiol. Immunol. Hung. 54:167-177.
Crossref

 
 

Watnick P, Kolter R (2000). Biofilm, city of microbes. J. Bacteriol. 182:2675-2679.
Crossref