African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12488

Full Length Research Paper

Characterization of fluorescent Pseudomonas from Oryza sativa L. rhizosphere with antagonistic activity against Pyricularia oryzae (SACC.)

Annia Hernández-Rodríguez
  • Annia Hernández-Rodríguez
  • Department of Microbiology and Virology, Faculty of Biology, Universidad de La Habana, Calle 25 # 455 Plaza, Ciudad Habana, 10347, Cuba.
  • Google Scholar
Yanelis Acebo-Guerrero
  • Yanelis Acebo-Guerrero
  • Department of Microbiology and Virology, Faculty of Biology, Universidad de La Habana, Calle 25 # 455 Plaza, Ciudad Habana, 10347, Cuba.
  • Google Scholar
Gema Pijeira Fernández
  • Gema Pijeira Fernández
  • Department of Microbiology and Virology, Faculty of Biology, Universidad de La Habana, Calle 25 # 455 Plaza, Ciudad Habana, 10347, Cuba.
  • Google Scholar
Acela Díaz de la Osa
  • Acela Díaz de la Osa
  • Department of Microbiology and Virology, Faculty of Biology, Universidad de La Habana, Calle 25 # 455 Plaza, Ciudad Habana, 10347, Cuba.
  • Google Scholar
Gloria Maria Restrepo-Franco
  • Gloria Maria Restrepo-Franco
  • Biological Research Group, Research of Microbiology and Agro-Industrial Biotecnology,Universidad Católica de Manizales, Carrera 23 No. 60-63, 170002, Manizales, Colombia.
  • Google Scholar


  •  Received: 11 April 2018
  •  Accepted: 10 September 2018
  •  Published: 19 September 2018

References

Acebo-Guerrero Y, Hernández-Rodríguez A, Vandeputte O, Miguelez-Sierra Y, Heydrich-Pérez M, Ye L, Cornelis P, Bertin P, El Jaziri M (2015). Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied Microbiology 119:1112-1126.
Crossref

 

Adesemoye AO, Torbert HA, Kloepper JW (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58:921-992.
Crossref

 
 

Agrios GN (2005). Plant diseases caused by fungi. 5th ed. Plant Pathology. Burlington MA: Elsevier: 386-483.

 
 

Ahmad F, Ahmad I, Khan MS (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163(2):173-181.
Crossref

 
 

Almaguer-Chávez M, Rojas TI, Dobal V, Batista A, Rives N, Aira MJ, Hernández-Lauzardo AN, Hernández-Rodríguez A (2012). Aerobiological dynamics of potentially pathogenic fungi in a rice agroecosystem in La Habana. Aerobiologia 28:177-183.
Crossref

 
 

Bashan Y, Holguin G, Ferrera Cerrato R (1996). Interacciones entre plantas y microorganismos benéficos. Terra 14:159-192.

 
 

Bigiramana J, Fontaine R, Hofte M (2000). Bean anthracnose: virulence of Colletotrichum lindemuthianum isolates from Burundi, Central Africa. Plant Disease 84(4):491.
Crossref

 
 

Boddey RM, Boddey LH, Urquiaga S (1990). The acetylene reduction technique in the measurement of biological fixation of nitrogen. Editora Universida de Rural, EMBRAPA-CNPBS. Itaguaí Documents 6:37.

 
 

ButaitÄ— E, Baumgartner M, Wyder S, Kümmerli R (2017). Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nature Communications 8(1):414.
Crossref

 
 

Calderon CE, Perez-García A, de Vicente A, Cazorla FM (2013). The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Molecular Plant-Microbe Interactions 26:554-565.
Crossref

 
 

Cárdenas R, Travieso E, Valdés N, Pérez N, González MC, Cepero N, et al. (2007). Monitoreo de la piriculariosis (Pyricularia grisea Sacc.) en el cultivo del arroz (Oryza sativa L.). Fitosanidad 11:1-4.

 
 

Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV (2006). Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Molecular Plant-Microbe Interactions 19:418-428.
Crossref

 
 

Chaiharn M, Chunhaleuchanon S, Lumyong S (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology 25(11):1919-1928.
Crossref

 
 

Chen Y, Rekha P, Arun A, Shen F, La W, Young C (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcicum phosphate solubilizing abilities. Applied Soil Ecology 34:33-41.
Crossref

 
 

Cornelis P (2010). Iron uptake and metabolism in Pseudomonas. Applied Microbiology and Biotechnology 86:1637-1645.
Crossref

 
 

De Vleesschauwer D, Cornelis P, Höfte M (2006). Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Molecular Plant-Microbe Interactions 19(12):1406-1419.
Crossref

 
 

Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001). phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. Journal of Bacteriology 183:318-327.
Crossref

 
 

Egamberdieva D, Lugtenberg B (2014). Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In Use of Microbes for the Alleviation of Soil Stresses. Springer New York 1:73-96.

 
 

Estrada G, Baldani V, de Oliveira D, Urquiaga S, Baldani J (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil 369(1-2):115-129.
Crossref

 
 

Filippi MCC, da Silva GB, Silva-Lobo VL, Côrtes MVCB, Moraes AJ, Prabhu AS (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control 58(2):160-166.
Crossref

 
 

Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Siegfried S (2017). Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Frontiers in Microbiology 8:100.
Crossref

 
 

Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, Lemanceau P (2012). Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microbial Ecology 64(3):725-737.
Crossref

 
 

Gohel N, Chauhan H (2015). Integrated management of leaf and neck blast disease of rice caused by Pyricularia oryzae. African Journal of Agricultural Research 10(19):2038-2040.
Crossref

 
 

Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology 7(2):096-102.

 
 

Heng JLS, Zainual NSM (2017). Effect of encapsulated Pseudomonas putida strain PF1P on plant growth and itsmicrobialecosystem. African Journal of Biotechnology 16(41):2009-2013.
Crossref

 
 

Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velázquez-del Valle MG, Hernández-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Applied Soil Ecology 36:184-186.
Crossref

 
 

Hernández-Rodríguez A, León-Plasencia D, Rives- Rodríguez N, Díaz-de la Osa A, Almaguer-Chávez M, Acebo-Guerrero Y (2010). Identification of native isolates of fluorescent pseudomonas with antagonistic activity against Curvularia spp. Protección Vegetal 26(2):21-29.

 
 

Herrera L (2003). La fitopatología cubana. Historia, desarrollo y actualidad. Fitosanidad 7:55-62.

 
 

Höfte M, Altier N (2010). Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology 161:464-471.
Crossref

 
 

IRRI (2002). Standard evaluation system for rice. November 15, 17. Los Ba-os, Phillippines: International Rice Research Institute (IRRI).

 
 

Jaiganesh V, Eswaran A, Balabaskar P, Kannan C (2007). Antagonistic activity of Serratia marcescens against Pyricularia oryzae. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 35(2):48-54.

 
 

Kabir M, Faure D, Heulin T, Achoawk W, Bally R (1995). Oligonucleotide probes based on 16S rRNA sequences for the identification of four Azospirillum species. Canadian Journal of Microbiology 41:1081-1087.
Crossref

 
 

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Lee IJ (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry 84:115-124.
Crossref

 
 

Karthikeyan V, Gnanamanickam SS (2008). Biological control of Setaria blast (Magnaporthe oryzae) with bacterial strains. Crop Protection 27(2):263-267.
Crossref

 
 

Kremer RJ, Souissi T (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology 43:182-186.
Crossref

 
 

Kumar SM, Chowdappa P, Krishna V, Sandhya H (2015). Induction of defense-related proteins and growth promotion in tomato by mixture of Trichoderma harzianum OTPB3 and Bacillus subtilis OTPB1 and Pseudomonas putida OPf1 against Phytophthora infestans. African Journal of Microbiology Research 9(2):96-110.
Crossref

 
 

Kumar V, Narula N (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils 28:301-305.
Crossref

 
 

Lane DJ (1991). 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics eds. Stackebrandt, E. y Goodfellow, M.: Wiley, Chichester, United Kingdom pp.115-175.

 
 

Liu K, McInroy JA, Hu CH, Kloepper JW (2018). Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Disease 102(1):67-72.
Crossref

 
 

Lugtenberg B, Kamilova F (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology 63:541-556.
Crossref

 
 

Magar PB, Acharya B, Pandey B (2015). Use of chemical fungicides for the management of rice blast (Pyricularia grisea) disease at Jyotinagar, Chitwan, Nepal. International Journal of Applied Science and Biotechnology 3(3):474-478.
Crossref

 
 

Maheshkumar KS, Krishnaraj PU, Alagwadi AR (1999). Mineral solubilising activity of Acetobacter diazotrophicus, a bacterium associated with sugarcane. Current Science 76:874-875.

 
 

Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS (1998). A seven-gene locus for synthesis of phenazine-1- carboxylic acid by Pseudomonas fluorescens 2-79. Journal of Bacteriology 180:2541-2548.

 
 

Mavrodi OV, Gardener BBM, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001). Genetic diversity of phlD from 2,4-diacetyl phloroglucinol producing fluorescent Pseudomonas spp. Phytopathology 91:35-43.
Crossref

 
 

Mehnaz S (2013). Secondary metabolites of Pseudomonas aurantiaca and their role in Plant Growth Promotion. Plant Microbe Symbiosis: Fundamentals and Advances. NK Arora. Springer India pp. 373-393.

 
 

Meyer JM, Abdallah M (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Journal of General Microbiology 107:319-328.
Crossref

 
 

Ministerio de la Agricultura (MINAG) (2006). Instructivo Técnico de Arroz. Centro Nacional de Sanidad Vegetal, Instituto de Investigaciones del Arroz pp. 50-55. h

 
 

Mishra J, Arora NK (2017). Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology 125:35-45
Crossref

 
 

Nautiyal C (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170:265–270.
Crossref

 
 

Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE., Gill SR., Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology 4(12):799-808.
Crossref

 
 

Padovani L, Capri E, Padovani C, Puglisi E, Trevisan M (2006). Monitoring triciclazole residues in rice paddy watersheds. Chemosphere 62(2):303-314.
Crossref

 
 

Paneque VM (2000). Manual de técnicas analíticas para suelo, foliar y fertilizantes químicos. La Habana: INCA, 75 p.

 
 

Park JK, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011). Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Letters in Applied Microbiology 52:532-537.
Crossref

 
 

Pathma J, Kennedy RK,Sakthivel N (2011). Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In Bacteria in Agrobiology: Plant Growth Responses ed. Maheshwari DK.: Springer Berlin Heidelberg 4:77-105.

 
 

Perneel M, Heyrman J, Adiobo A, Maeyer KD, Raaijmakers JM, Vos PD, Höfte M (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology 103:1007-1020
Crossref

 
 

Poritsanos NJ (2005). Molecular mechanisms involved in secondary metabolite production and biocontrol of Pseudomonas chlororapis PA23. Winnipeg, MB, Canada: University of Manitoba 100 p.

 
 

Prabhu AS, Filippi MC, Silva GB, Lobo VLS, Moraes OP (2009). An unprecedented outbreak of rice blast on a newly released cultivar BRS Colosso in Brazil. In: Wang, G.L., Valente, B. (Eds.), Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, New York pp. 257-266.
Crossref

 
 

Prasanna Kumar MK, Amruta N, Manjula CP, Puneeth ME, Teli K (2017). Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Science and Technology 27(4):581-599.
Crossref

 
 

Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, Andriantsimahavandy A, Rasamindrakotroka A, Duez P, El Jaziri M, Vandeputte OM (2013). Endemic Malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology 159:924-938.
Crossref

 
 

Ribot C, Hirschb J, Balzergue S, Tharreau D, Notteghem JL, Lebrun MH, Morelb JB (2008). Susceptibility of rice to the blast fungus, Magnaporthe oryzae. Journal of Plant Physiology 165:114-124.
Crossref

 
 

Rodrigues LS, Baldani VLD, Reis VM, Baldani JI (2006). Diversidade de bactérias diazotróficas endofíticas dos generos Herbaspirillum e Burkholderia na cultura de arroz inundado. Pesquisa Agropecuária Brasileira 41:275-284.
Crossref

 
 

Rodríguez AT, Ramírez MA, Cárdenas RM, Hernández AN, Velazquez MG, Bautista S (2007). Induction of defense response of Oryzasativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology 89:206-215.
Crossref

 
 

Rojas Badía MM, Tejera Hernández B, Larrea Murrel JA, Mahillon J, Heydrich Pérez M (2011). Aislamiento y caracterización de cepas de Bacillus asociadas al cultivo del arroz (Oryza sativa L.). Revista Brasileira de Agroecología 6(1):90-99.

 
 

Saber FM, Abdelhafez AA, Hassan EA, Ramadan EM (2015). Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Annals of Agricultural Sciences 60(1):131-140.
Crossref

 
 

Sarwar M, Kremer RJ (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology 20:282–285.
Crossref

 
 

Sesma A, Osbourn AE (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582-586.
Crossref

 
 

Sester M, Raveloson H, Tharreau D, Dusserre J (2014). Conservation agriculture cropping system to limit blast disease in upland rainfed rice. Plant Pathology 63:373-381.
Crossref

 
 

Sharifi-Noori MS, Saud HM, Azizi E (2015). Evaluation of plant growth promoting rhizobacteria as biocontrol agents for the control of blast disease in rice. Journal of Agricultural Science Engineering 1(3):135-142.

 
 

Spencer JF, Ragout AL (2001). Métodos microbiológicos. Totowa New Jersey (Estados Unidos): Humana Press Inc. pp. 173-181.

 
 

Sun D, Zhuo T, Hu X, Fan X, Zou H. (2017). Identification of a Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease. Biological Control 114:45-50.
Crossref

 
 

Tamura K, Stetcher G, Peterson D, Filipski A, Kumar S (2013). MEGA 6: Molecular Evolutionary Genetics Analysis (MEGA) software version 6.0. Molecular. Biology and Evolution 30(12):2725-2729.
Crossref

 
 

Thuan N, Bigirimana J, Roumen E, van der Straeten E, Hofte M (2006). Molecular and pathotype analysis of the rice blast fungus in North Vietnam. European Journal of Plant Patholology 114(4):381-396.
Crossref

 
 

Whistler CA, Stockwell VO, Loper JE (2000). Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Applied Environmental Microbiology 66:2718-2725.
Crossref

 

Yang D, Wang B, Wang J, Chen Y, Zhou M (2009). Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control 51(1):61-65.
Crossref

 
 

Zhang R, Xu X, Chen W, Huang Q (2016). Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methylparathion and cadmium. Applied Microbiology and Biotechnology 100(4):1987-1997.
Crossref