African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

The impact of over-expression of NPK1 gene on growth and yield of sorghum under drought stress

Shireen K. Assem
  • Shireen K. Assem
  • Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
  • Google Scholar
Mohamed M. Zamzam
  • Mohamed M. Zamzam
  • Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
  • Google Scholar
Mohamed E. Saad
  • Mohamed E. Saad
  • Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
  • Google Scholar
Basita A. Hussein
  • Basita A. Hussein
  • Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
  • Google Scholar
Ebtissam H. A. Hussein
  • Ebtissam H. A. Hussein
  • Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
  • Google Scholar


  •  Received: 12 August 2017
  •  Accepted: 08 November 2017
  •  Published: 06 December 2017

References

Able JA, Rathus C, Godwin ID (2001). The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In vitro Cell. Dev. Biol. Plant 37:341-348.
Crossref

 

Acquaah G (2007). Principles of Plant Genetics and Breeding. Wiley-Blackwell, Boston, Oxford, Chichester, Berlin, Singapore, Melbourne, Tokyo, Beijing.

 
 

Assefa Y, Staggenborg SA (2010). Grain sorghum yield with hybrid advancement and changes in agronomic practices from 1957 through 2008. Agron. J. 102:703-706.
Crossref

 
 

Assem SK, Zamzam MM, Hussein BA, Hussein EHA (2014). Evaluation of somatic embryogenesis and plant regeneration in tissue culture of ten sorghum (Sorghum bicolor L.) genotypes. Afr. J. Biotechnol. 13:3672-3681.
Crossref

 
 

Belton PS, Taylor JR (2004). Sorghum and millets: protein sources for Africa. Trends Food Sci. Technol. 15:94-98.
Crossref

 
 

Bhatnagar-Mathur P, Vadez V, Sharma KK (2008). Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27:411-424.
Crossref

 
 

Cannell ME, Doherty A, Lazzeri PA, Barcelo P (1999). A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor. Appl. Genet. 99:772-784.
Crossref

 
 

Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997). Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell. Dev. Biol. Plant 33:92-100.
Crossref

 
 

Casas A.M., Kononowicz A.K., Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa P (1993). Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA. 90:11212-11216.
Crossref

 
 

Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115:971-980.
Crossref

 
 

Das K. and Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers Environ. Sci. 2(53):1-13.
Crossref

 
 

Devi P, Zhong H, Sticklen M (2004). Production of transgenic sorghum plants with related HVA1 gene. In: Seetharama N, Godwin ID. (eds), Sorghum Tissue Culture and Transformation. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.

 
 

Emani C, Sunilkumar G, Rathore KS (2002). Transgene silencing and reactivation in sorghum. Plant Sci. 2:181-192.
Crossref

 
 

Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002). Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13-22.
Crossref

 
 

Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a). Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321-333.
Crossref

 
 

Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b). Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol. J. 3: 591-599.
Crossref

 
 

Grootboom AW, Mkhonza NL, O`Kennedy MM, Chakauya E., Kunert K, Chikwamba R K (2010). Biolistic Mediated Sorghum (Sorghum bicolor L. Moench) Transformation via Mannose and Bialaphos Based Selection Systems. Int. J. Bot. 6: 89-94.
Crossref

 
 

Hiei Y, Ohta S, Komari T, Kumashiro T (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282.
Crossref

 
 

Horwich L. (2014). Molecular Chaperones in Cellular Protein Folding: The Birth of a Field. Cell 157:285-288.
Crossref

 
 

Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006). Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25:784-791.
Crossref

 
 

Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14:745-750.
Crossref

 
 

Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat. Biotechnol. 17:287-291.
Crossref

 
 

Kim H, Lee K, Hwang H, Bhatnagar N, Kim DY, Yoon IS, Byun MO, Kim ST, Jung KH, Kim BG (2014). Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J. Exp. Bot. 65:453-464.
Crossref

 
 

Kovtun Y, Chiu WL, Tena G, Sheen J (2000). Functional analysis of oxidative stress-activated mitogen- activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97:2940-2945.
Crossref

 
 

Kovtun Y, Chiu WL, Zeng W, & Sheen J. (1998). Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716-720.
Crossref

 
 

Li HS, Chang CS, Lu LS, Liu CA, Chan MT, Charng YY (2003). Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Bot. Bull. Acad. Sin. 44:129-140.

 
 

Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009). Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss. Organ Cult. 99: 97-108.
Crossref

 
 

Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010). Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol. Plantarum 54: 647-652.
Crossref

 
 

Mall TK, Dweikat I, Sato SJ, Neresian N, Xu K, Ge Z, Wang D, Elthon T, Clemente T (2011). Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol. Biol. 75:467-479.
Crossref

 
 

Milesi C, Samanta A, Hashimoto H, Kumar KK, Ganguly S, Thenkabail P.S., Srivastava AN, Nemani RR, Myneni RB (2010). Decadal Variations in NDVI and Food Production in India. Remote Sens. 2:758-776.
Crossref

 
 

Mortimore M (2009). Dryland Opportunities: A New Paradigm for People, Ecosystems and Development. IUCN, Gland, Switzerland, IIED, London, UK, UNDP, New York, USA.

 
 

Muoma JVO, Ombori O (2014). Agrobacterium-Mediated Transformation of Selected Kenyan Maize (Zea mays L.) Genotypes by Introgression of Nicotiana Protein Kinase (npk1) to Enhance Drought Tolerance. Am. J. Plant Sci. 5:863-883.
Crossref

 
 

Murray MG, Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321-4325.
Crossref

 
 

Pe-a PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente TE (2017). Expression of the Maize Dof1 Transcription Factor in Wheat and Sorghum. Front. Plant Sci. 8:434-447.

 
 

Rumpho ME, Edwards GE, Loescher WH (1983). A pathway for photosynthetic carbon flow to mannitol in celery leaves: activity and localization of key enzymes. Plant Physiol. 73:869-873.
Crossref

 
 

Shinozaki K, Yamaguchi-Shinozaki K (1999). Molecular responses to drought stress. In: Shinozaki K. & Yamaguchi-Shinozaki K. (eds), Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. RG Landes Co, Austin.

 
 

Shou H, Bordallo P, Wang K (2004a). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot. 55:1013-1019.
Crossref

 
 

Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004b). Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc. Natl. Acad. Sci. USA 101:3298-3303.
Crossref

 
 

Spencer TM, O'Brien JV, Start WG, Adams TR, Gordon-Kamm WJ & Lemaux, PG (1992). Segregation of transgenes in maize. Plant Mol. Biol. 18:201-210.
Crossref

 
 

Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987). Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6:2519-2523.

 
 

Tuberosa R, Salvi S (2006). Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11:405-412.
Crossref

 
 

Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. (2006). Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17:113-122.
Crossref

 
 

Wenzel WG (1999). Effect of moisture stress on sorghum yield and its components. South Afr. J. Plant Soil 16:153-157.
Crossref

 
 

Wilhite DA (2000). Drought as a natural hazard in concepts and definitions. In: Wilhite D.A. (ed), Drought: A Global Assessment. Routledge, Oxfordshire, New York City, Melbourne, New Delhi, Singapore, Beijing.

 
 

Xiong L, Zhu JK (2001). Abiotic stress signal transduction: molecular and genetic perspectives. Physiol. Plantarum 112:152-166.
Crossref

 
 

Yellisetty V, Reddy LA, Mandapaka M (2015). In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses. J. Genet. 94:425-434.
Crossref

 
 

Zamzam MM (2014). Genetic Improvement of Some Sorghum Lines via Genetic Engineering Approaches. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Egypt. 170p.

 
 

Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000). Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44:789-798.
Crossref

 
 

Zhu H, Muthukrishnan S, Krishnaveni S., Jeoung JM, Liang, GH (1998). Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52:243-252.