African Journal of
Business Management

  • Abbreviation: Afr. J. Bus. Manage.
  • Language: English
  • ISSN: 1993-8233
  • DOI: 10.5897/AJBM
  • Start Year: 2007
  • Published Articles: 4131

Full Length Research Paper

Decision support model for supplier selection in healthcare service delivery using analytical hierarchy process and artificial neural network

Stephen Gbenga Fashoto
  • Stephen Gbenga Fashoto
  • Department of Computer Science, Kampala International University, Kampala, Uganda.
  • Google Scholar
Boluwaji Akinnuwesi
  • Boluwaji Akinnuwesi
  • Department of Computer Science, Lagos State University Ojo Lagos, Nigeria.
  • Google Scholar
Olumide Owolabi
  • Olumide Owolabi
  • Department of Computer Science and ICT Centre, University of Abuja, Nigeria.
  • Google Scholar
David Adelekan
  • David Adelekan
  • Department of Computer Science, Redeemer’s University Ede, Osun State, Nigeria.
  • Google Scholar


  •  Received: 12 February 2016
  •  Accepted: 20 March 2016
  •  Published: 14 May 2016

Abstract

The healthcare industry today has grown rapidly and emphasizing the efficiency and effectiveness within the healthcare delivery systems has become a major priority in the field. In order to increase the satisfaction and safety of patient, hospitals must improve their overall performance. We established from our review that a number of models have been developed for supplier selection using diverse methods. Most of the models were used to evaluate the performance of healthcare service sector but there is little emphasis on suppliers of health service facilities. And also to the best of our search, we could not find research works on models for evaluating and selecting suppliers in the healthcare unit of tertiary institution. Hence our focus in this study is to develop a decision support model for evaluating and selecting suppliers in the healthcare service of universities. The use of manual techniques for supplier selection in healthcare unit of universities in developing countries is quite tedious and inefficient particularly when several criteria are taken into consideration. These make decision making difficult and also cause the health centre to frequently stock out. Moreover deciding when to order and how much to order is not very easy and hence not meeting patients’ demands adequately. This study focuses on investigating and developing a decision support model for evaluating and selecting suppliers in the healthcare service of tertiary institutions using analytical hierarchy process (AHP) and artificial neural network (ANN). Our case study is the health center of Redeemers University, Nigeria. According to the Overall Priority Vector, the priority values for the respective criteria are: Quality = 0.2192, Service = 0.2160, Delivery = 0.2102, Cost = 0.1968 and Risk = 0.1860.   Our results revealed that the quality of product supply by the supplier is the most important criterion, while the risk on the supplies is the least important. To improve on the accuracy of these results, the AHP model was supplemented by a 3-layer artificial neural network, adding a learning component to the model. The result also shows that quality is the most important criterion, but with a high index of 0.6845 as opposed to 0.2192 for the AHP alone. This shows that the hybrid model is much better than the AHP alone.

Key words: Supply chain management, AHP, ANN, decision making and supplier selection.