African Journal of
Business Management

  • Abbreviation: Afr. J. Bus. Manage.
  • Language: English
  • ISSN: 1993-8233
  • DOI: 10.5897/AJBM
  • Start Year: 2007
  • Published Articles: 4071

Full Length Research Paper

How universities fill the talent gap: The data scientist in the Italian case

Maddalena Della Volpe
  • Maddalena Della Volpe
  • Department of Business, Management and Innovation System (DISA-MIS), University of Salerno, Italy.
  • Google Scholar
Francesca Esposito
  • Francesca Esposito
  • Department of Political and Communication Sciences, University of Salerno, Italy.
  • Google Scholar


  •  Received: 13 September 2019
  •  Accepted: 22 January 2020
  •  Published: 29 February 2020

References

Aasheim CL, Williams S, Rutner P, Gardiner A (2015). Data analytics vs. data science: A study of similarities and differences in undergraduate programs based on course descriptions. Journal of Information Systems Education 26(2):103-115.

 

Agasisti T, Bowers AJ (2017). Data analytics and decision making in education: towards the educational data Scientist as a key actor in schools and higher education institutions. Handbook of Contemporary Education Economics pp. 184-210. 
Crossref

 
 

Anderson P, Bowring J, McCauley R, Pothering G, Starr C (2014, March). An undergraduate degree in data science: curriculum and a decade of implementation experience. In: Proceedings of the 45th ACM technical symposium on Computer science education pp. 145-150. 
Crossref

 
 

Asamoah DA, Sharda R, Hassan Zadeh A, Kalgotra P (2017). Preparing a data scientist: A pedagogic experience in designing a big data analytics course. Decision Sciences Journal of Innovative Education 15(2):161-190.
Crossref

 
 

Baumer B (2015). A data science course for undergraduates: Thinking with data. The American Statistician 69(4):334-342.
Crossref

 
 

Besse P, Laurent B (2016). De Statisticien à Data Scientist. Statistique et Enseignement. Société Française de Statistique 7(1):75-93.

 
 

Chen J, Chen Y, Du X, Li C, Lu J, Zhao S, Zhou X (2013). Big data challenge: a data management perspective. Frontiers of Computer Science 7(2):157-164.
Crossref

 
 

Cukier K, Mayer-Schoenberger V (2013). The rise of big data: How it's changing the way we think about the world. Foreign Affairs 92:28.

 
 

Dahr V (2012). Data science and prediction. CeDER Working Papers, CeDER-12-01. Available at: 

View
Crossref

 
 

Davenport T (2014). Big data at work: dispelling the myths, uncovering the opportunities. Harvard Business Review Press.

 
 

Davenport TH, Patil DJ (2012). Data scientist. Harvard Business Review 90(5):70-76.

 
 

Davenport TH, Dyché J (2013). Big data in big companies. International Institute for Analytics, 3. Available at: 

View

 
 

Della Volpe M (2017). Assessment of internship effectiveness in South Italy Universities. Education+ Training 59 (7/8):797-810.
Crossref

 
 

Deloitte (2016). Analytics trends: The next evolution. Report 2016. Available at: 

View

 
 

Deloitte (2019). Leading the social enterprise: Reinvent with a human focus. Global Human Capital Trends. Available at: 

View

 
 

De Mauro A, Greco M, Grimaldi M, Ritala P (2018). Human resources for Big Data professions: A systematic classification of job roles and required skill sets. Information Processing and Management 54(5):807-817.
Crossref

 
 

De Veaux RD, Agarwal M, Averett M, Baumer BS, Bray A, Bressoud TC, Kim AY (2017). Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application 4:15-30. 
Crossref

 
 

Dumbill E, Liddy ED, Stanton J, Mueller K, Farnham S (2013). Educating the next generation of data scientists. Big Data 1(1):21-27.
Crossref

 
 

Etzkowitz H, Zhou C (2017). The triple helix: University-industry-government innovation and entrepreneurship. London, UK: Routledge.
Crossref

 
 

Figure Eight (2018). Data Scientist Report 2018. Available at 

View

 
 

Fisher D, DeLine R, Czerwinski M, Drucker S (2012). Interactions with big data analytics. Interactions 19(3):50-59.
Crossref

 
 

Giaume A (2017). Data scientist: Tra competitività e innovazione. FrancoAngeli.

 
 

Goldstein HA (2010). The entrepreneurial turn and regional economic development mission of universities. The Annals of Regional Science 44(1):83.
Crossref

 
 

Granville V (2014). Developing analytic talent: Becoming a data scientist. Hoboken, USA: John Wiley and Sons.

 
 

Gross M (1968). Grammaire transformationnelle du français. Syntaxe du verbe, 1. Paris, France: Larousse.

 
 

Gross M (1979). On the failure of generative grammar. Language 55(4):859-885.
Crossref

 
 

Gross M (1986). Lexicon-grammar the representation of compound words. Paper presented at The 11th International Conference on Computational Linguistics. 
Crossref

 
 

Guerrero M, Urbano D, Fayolle A, Klofsten M, Mian S (2016). Entrepreneurial universities: emerging models in the new social and economic landscape. Small Business Economics 47(3):551-563.
Crossref

 
 

Gupta B, Goul M, Dinter B (2015). Business Intelligence and Big Data in Higher Education: Status of a Multi-Year Model Curriculum Development Effort for Business School Undergraduates, MS Graduates, and MBAs. Communications of the Association for Information Systems. CAIS 36:23.
Crossref

 
 

Hardin R, Nicholas J, Horton D, Nolan B, Baumer O, Hall-Holt P, Murrell R, Peng P, Roback D, Temple Lang, Ward MD (2015). Data science in statistics curricula: Preparing students to 'think with data. The American Statistician 69(4):343-353.
Crossref

 
 

Harris H, Murphy S, Vaisman M (2013). Analyzing the Analyzers: An Introspective Survey of Data Scientists and Their Work. Newton, MA: O'Reilly Media, Inc.

 
 

Hu H, Luo Y, Wen Y, Ong YS, Zhang X (2018). How to Find a Perfect Data Scientist: A Distance-Metric Learning Approach. IEEE Access 6:60380-60395. 
Crossref

 
 

IBM (2017). The Quant Crunch. How the demand for data science skills is disrupting the job market. Available at: 

View

 
 

Kandel S, Paepcke A, Hellerstein JM, Heer J (2012). Enterprise data analysis and visualization: An interview study. IEEE Transactions on Visualization and Computer Graphics 12:2917-2926.
Crossref

 
 

Kim M, Zimmermann T, DeLine R, Begel A (2016). The emerging role of data scientists on software development teams. ICSE '16 Proceedings of the 38th International Conference on Software Engineering pp. 96-107. 
Crossref

 
 

Kim M, Zimmermann T, DeLine R, Begel A (2018). Data scientists in software teams: State of the art and challenges. IEEE Transactions on Software Engineering 44(11):1024-1038.
Crossref

 
 

Kitchin R (2014). The data revolution: Big data, open data, data infrastructures and their consequences. Newcastle, UK: Sage.
Crossref

 
 

Kruss G, Visser M, Haupt G, Aphane M (2012). Academic interaction with external social partners: Investigating the contribution of universities to economic and social development. Education and skills development. Cape Town, South Africa: HSRC Press.

 
 

McAfee A, Brynjolfsson E, Davenport TH, Patil DJ, Barton D (2012). Big data: the management revolution. Harvard Business Review 90(10):60-68.

 
 

Miller S (2014). Collaborative approaches needed to close the big data skills gap. Journal of Organization Design 3(1):26-30. 
Crossref

 
 

MIUR (2019). Istituzioni universitarie accreditate. Available at: 

View

 
 

Osservatori.Net (2018). Il mercato dei Big data in Italia. Osservatorio Big Data Analytics & Business Intelligence. Available at: 

View

 
 

Perera S, Babatunde SO, Zhou L, Pearson J, Ekundayo D (2017). Competency mapping framework for regulating professionally oriented degree programmes in higher education. Studies in Higher Education 42(12):2316-2342.
Crossref

 
 

Provost F, Fawcett T (2013). Data science and its relationship to big data and data-driven decision making. Big Data 1(1):51-59.
Crossref

 
 

Schewe KD, Thalheim B (2008). Semantics in data and knowledge bases. International Workshop on Semantics in Data and Knowledge Bases, Berlin, Heidelberg: Springer pp. 1-25.
Crossref

 
 

Silberztein M (2003). NooJ manual.

 
 

Silberztein M (2015). La formalisation des langues: l'approche de NooJ. London, UK: ISTE Editions.

 
 

Song IY, Zhu Y (2016). Big data and data science: what should we teach? Expert Systems 33(4):364-373.
Crossref

 
 

Sproat R, Black A, Chen S, Kumar S, Ostendorfk M, Richards C (2001). Normalization of non-standard words. Computer Speech and Language 15:287-333.
Crossref

 
 

Storey VC, Song IY (2017). Big data technologies and management: What conceptual modeling can do? Data and Knowledge Engineering 108:50-67.
Crossref

 
 

Succi C, Canovi M (2019). Soft skills to enhance graduate employability: comparing students and employers' perceptions. Studies in Higher Education 2019:1-14.
Crossref

 
 

Van der Aalst WM (2014). Data scientist: The engineer of the future. Enterprise interoperability VI, Interoperability for Agility, Resilience and Plasticity of Collaborations. pp. 13-26. 
Crossref

 
 

Vietri S (2004). Lessico-grammatica dell'italiano. Metodi, descrizioni e applicazioni.

 
 

Wilder CR, Ozgur CO (2015). Business analytics curriculum for undergraduate majors. INFORMS Transactions on Education 15(2):180-187.
Crossref