African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1126

Full Length Research Paper

Bacterial community changes during composting of municipal crop waste using low technology methods as revealed by 16S rRNA

John Baptist Tumuhairwe
  • John Baptist Tumuhairwe
  • Department of Agricultural Production, College of Agricultural and Environmental Management, Makerere University, Kampala, Uganda.
  • Google Scholar
John Stephen Tenywa
  • John Stephen Tenywa
  • Department of Agricultural Production, College of Agricultural and Environmental Management, Makerere University, Kampala, Uganda.
  • Google Scholar


  •  Received: 07 February 2018
  •  Accepted: 05 April 2018
  •  Published: 30 June 2018

Abstract

Bacterial communities are actively involved in composting process but the environment within the compost influences their diversity, abundance and succession. In this study, the authors investigated the bacterial communities in tropical crop waste compost using pyrosequencing. Municipal crop wastes from the tropics (Uganda) were composted under four different low-technology methods. Samples were collected from the early thermophilic, late thermophilic, and mesophilic phases, and from mature compost. Pyrosequencing of the amplified variable V4 region of the 16s rDNA generated over 110 000 sequences.  Chao1 and cluster analysis at 3% dissimilarity showed that bacterial community richness declined during the composting process. The community was dominated by a few bacterial taxa during the thermophilic phases. Species evenness increased as compost progressed to maturity despite a decline in the number of taxa over the successional progression. Bacterial community diversity, abundance and succession changed with the composting method. This pattern of diversity may be attributed to competition and selection during the microbial succession. A total of 22 phyla and 513 genera were identified from all the methods in the entire composting process. The most abundant phyla were Proteobacteria, Firmicutes, Bacteriodes and Actinobacteria. Pyrosequencing provided more information on compost bacterial community diversity and abundance than previously used molecular methods. Several novel bacteria existing in tropical crop waste compost remained unclassified.

Key words: 16S rRNA, succession, compost, bacterial community, pyrosequencing.