African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1126

Full Length Research Paper

Characterizing groundwater vulnerability in developing urban settings using DRASTIC-LuPa approach: A case study of Aba City, Nigeria

Uche Dickson Ijioma
  • Uche Dickson Ijioma
  • Brandenburgische Technische Universität, Cottbus-Senftenberg, Germany.
  • Google Scholar
Frank Wendland
  • Frank Wendland
  • Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG)-3 Agrosphere, 52425 Jülich, Germany. Department of Hydrological System Analysis, Brandenburgische Technische Universität, Cottbus-Senftenberg Germany.
  • Google Scholar
Rainer Herd
  • Rainer Herd
  • Brandenburgische Technische Universität, Cottbus-Senftenberg, Germany.
  • Google Scholar


  •  Received: 13 September 2021
  •  Accepted: 23 November 2021
  •  Published: 31 December 2021

References

Adams R (2013). Water-table elevation and depth to the water table. Minnesota: Minnesota Department of Natural Resources.

 

Adamu N, Ezeribe IE, Oyedeji OA (2019). Engineering properties of the soils around Aba, Southeast Nigeria. Retrieved on November 11, 2019, from Academia.

View

 

Adiat KAN, Akeredolu BE, Akinlalu AA, Olayanju GM (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in a gold mining environment: a case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring Assessment doi: 10.1007/s10661-020-08532-7
Crossref

 

Agharanya UP, Dim CI (2018). Water quality assessment and resource potentials: the case of Aba urban and its environs, Niger Delta basin. Water Resource Journal 45(2):250-267.
Crossref

 

Aller L, Bennett T, Lehr JH, Petty R, Hackett G (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency. Washington, DC, 455.
Crossref

 

Amadi AN, Olasehinde PI, Nwankwoala HO, Dan-Hassan MA, Okoye NO (2014). Aquifer vulnerability studies using DRASTICA model. International Journal of Engineering Science Invention 3(3):1-10.

 

Arthur J, Wood H, Baker A, Cichon J, Raines GL. (2007). Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Natural Resources Research 16(2):93-107.
Crossref

 

Bazimenyera J, Zhonghua T (2008). A GIS-based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Hangzhou-Jiaxing-Huzhou Plain, China. Resource Journal of Applied Sciences pp. 550-559.

 

Civita M, Forti P, Marrini P, Meccheri M, Micheli L, Piccini L, Pranzini G (1991). Aquifer vulnerability to contamination map of the Apuan Alps. Mem. explic., Monography G.N.D.C.I.- C.N.R. no. 399.

 

Doerfliger N, Jeannin PY, Zwahlen F (1999). Water vulnerability assessment in Karstic environment: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology 39(2):165-176.
Crossref

 

Dörfliger N, Zwahlen F (1998). Practical guide: Groundwater vulnerability mapping in Karstic Regions (EPIK); Bern: Swiss Agency for the Environment, Forests and Landscape (SAEFL).

 

Doungmanee P (2016). The nexus of agricultural water use and economic development level. Kasetsart Journal of Social Sciences pp. 38-45.
Crossref

 

Edet A (2014). An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Environmental Earth Sciences 71(4):1747-1765.
Crossref

 

Egboka BC, Nwankwor GI, Orajaka IP, Ejiofor AO (1989). Principles and problems of environmental pollution of groundwater resources with case examples from developing countries. Environmental health perspectives 83:39-68.
Crossref

 

ESDAC (European Soil Data Centre) (1990). Soils map of Nigeria. Retrieved from European Commission Joint Research Centre.

View

 

Food and Agriculture Organization (FAO) (2020). Water at a glance: the relationship between water, agriculture, food security and poverty. Retrieved December 10, 2020, from FAO WATER.

View

 

Fileccia A (2015). Some simple procedures for the calculation of the influence radius and wellhead protection areas (theoretical approach and a field case for a water table aquifer in an alluvial plain). Acque Sotterranee - Italian Journal of Groundwater.
Crossref

 

Foster S (1987). Fundamental concept in aquifer vulnerability, pollution risk and protection strategy in Duijvenbooden V, Waegeningh HG. Vulnerability of soil and groundwater to pollutions. Hague: Committee on Hydrogeological Research pp. 69-86.

 

Frind E, Molson J, Rudolph D (2006). Well Vulnerability: A Quantitative Approach for Source Water Protection. Groundwater 44(5):732-742.

 

Hayward D, Oguntoyinbo JS (1987). Climatology of West Africa. New Jersey: Barnes and Noble's Books.

 

Ibe KM, Nwankwo GI, Onyekuru SO (2003). Groundwater pollution vulnerability and groundwater protection strategy for the Owerri area, Southeastern Nigeria. Water Resources Systems-Water Availability and Global Change. Sapporo: IAHS.

 

Ijeh IB (2013). Determination of the vulnerability of water supply aquifers in parts of Imo River Basin, South-eastern Nigeria: The case of Benin formation. International Journal of Modern Engineering Research 3(1):291-295.

 

Ijioma UD (2021a). Delineating the impact of urbanization on the hydrochemistry and quality of groundwater wells in Aba, Nigeria. Journal of Contaminant Hydrology. Doi: /10.1016/j.jconhyd.2021.103792
Crossref

 

Ijioma UD (2021b). Evaluation of water situation and development of drinking water management plan for Aba City, Southeast Nigeria. (PhD-thesis) Brandenburg University of Technology Cottbus-Senftenberg Germany. Doi: /10.26127/BTUOpen-5589

 

Jang WS, Engel B, Harbor J, Theller L (2017). Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water doi:10.3390/w9100792
Crossref

 

Jasem AH (2010). Assessing groundwater vulnerability in the Azraq basin area by a modified DRASTIC index. Journal of Water Resources and Protection.
Crossref

 

Jhariya DC, Kumar T, Pandey HK, Kumar S, Kumar D, Gautam AK, Kishore N (2019). Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environmental Earth Sciences 67(6):1801-1820.
Crossref

 

Jinno K, Tsutsumi A, Alkaeed O, Saita S, Berndtsson R (2009). Effects of land-use change on groundwater recharge model parameters. Hydrological Sciences Journal 54(2):300-315.
Crossref

 

Kemper KE (2004). Groundwater-from development to management. Hydrogeology Journal 12(1):3-5.
Crossref

 

Kumar A, Krishna AP (2019). Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International 35(11):1149-1178.
Crossref

 

Macheve B, Danilenko A, Abdullah R, Bove A, Moffitt LJ (2015). State water agencies in Nigeria: a performance assessment. Washington, DC: World Bank doi: 10.1596/978-1-4648-0657-5
Crossref

 

Mair A, El-Kadi AI (2013). Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA. Journal of Contaminant Hydrology 153:1-23.
Crossref

 

Massetti M, Poli S, Sterlacchini S, Beretta GP, Facchi A (2008). Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. Journal of environmental management 86(1):272-281.
Crossref

 

Mgbolu CC, Obiadi II, Obiadi CM, Okolo CM, Rumhe PE (2019). Integrated groundwater potentials studies, aquifer hydraulic characterisation and vulnerability investigations of parts of Ndokwa, Niger Delta basin, Nigeria. Solid Earth Sciences 4(3):102-112.
Crossref

 

Moore P, John SX (1990). SEEPAGE: A System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments. Chester, USA: Geol Tech; USDA, SCS, Northeast Technical Center.

 

Moustafa M (2019). Assessing perch aquifer vulnerability using modified DRASTIC: a case study of colliery waste in North-east England (UK). Hydrogeology Journal 27(5):1837-1850.
Crossref

 

Nwankwoala H (2015). Hydrogeology and groundwater resources of Nigeria. International Journal of Geology and Earth Sciences 4(4):56-76.
Crossref

 

Ophori DU (2007). A simulation of large-scale groundwater flows in the Niger Delta, Nigeria. Environmental Geosciences 14(4):181-195.
Crossref

 

Saatsaz M, Sulaiman WN, Eslamian S, Mohammadi K (2011). GIS DRASTIC model for groundwater vulnerability estimation for groundwater of Astaneh-Kouchesfahan Plain, Northern Iran. International Journal of Water 6(1-2):1-14.
Crossref

 

Secunda S, Collin ML, Mellou AJ (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of Environmental Management 54(1):39-57.
Crossref

 

Singh A, Srivastav SK, Kumar S, Chakrapani GJ (2015.). A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environmental Earth Sciences 74(7):5475-5490.
Crossref

 

Sorichetta A (2010). Groundwater vulnerability assessment using statistical methods. Milan: University of Milan.

 

UNESCO (2004). Groundwater Resóurces of the World and their Uses in Zektser IS, Everett LG (Eds).

View

 

van Stempvoort D, Evert L, Wassenaar L (1993). Aquifer vulnerability index: a GIS compactable method for groundwater vulnerability mapping. Canadian Water Resources Journal 18(1):25-37.
Crossref

 

Vias JM, Andrco B, Perles M, Carrasco F, Vadillo I, Jimenez P (2006). Proposed method of groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Applications in two pilot sites in southern Spain. Hydrogeology Journal pp. 912-925.
Crossref

 

Vrba J, Zoporozec A (1994). Guide book on Mapping Groundwater Vulnerability. Hannover: IAH.

 

Wakode HB (2016). Analysis of Urban Growth and Assessment of Impact of Urbanization on Water Resources- A Case Study of Hyderabad, India. Georesources and Materials Engineering. Aachen: RWTH Aachen University Library.

View

 

Weber H (1928). Die Reichweite von Grundwasserabsenkungen mittels Rohrbrunnen. Berlin: Julius Springer.
Crossref