Full Length Research Paper
References
Amit B, Eva K, Mika S (2011). Fluoride removal from water by adsorption - A review. Chem. Eng. J. 171(3):811-840. Crossref |
||||
Anirudhan TS, Maya RU (2007). Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere, 66(1):60-66. Crossref |
||||
Boualia A, Mellah A, Aissaoui T, Menacer K, Silem A (1993). Adsorption of organic matter contained in industrial H3PO4 onto bentonite: batch-contact time and kinetic study, Appl. Clay Sci. 7:431-445. Crossref |
||||
Brown WE, Lehr JR (1959). Applictation of phase rule to the chemical behaviour of MCPM in soils. Soil Sci. Soc. Amer. Proc. 23:7-12. Crossref |
||||
Casciani FS, Condrate SrRA (1980). The infrared and Raman Spectra of Several Calcium Hydrogen Phosphates, Proc. 2nd Internatl., Congress on Phosphorus compounds, Boston, pp.175-190. | ||||
Chow LC, Markovic MI (1997). Calcium phosphates in biological and industrial systems. Boston: Kluwer Academic Publishers, pp. 67-84. | ||||
Diaz-Nava C, Olguin MT, Solache-Rios M (2002). Water defluoridation by Mexican heulandite-clinoptilolite, Sep. Sci. Tech. 37:3109-3128. Crossref |
||||
Dilip T, Sadhana R, Raju K, Siddharth M, Subrt J, Nitin L (2010). Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater. 180:122-130. Crossref |
||||
Fan X, Parker DJ, Smith MD (2003). Adsorption kinetics of fluoride on low cost materials, Water Res. 37:4929-4937. Crossref |
||||
Featherstone JDB, Glena R, Shariati M, Shields CP (1990). Dependence ofiln vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J. Dent. Res. 69:620-625. Pubmed |
||||
Hammari LEL, Laghzizil A, Barboux P, Lahlil K, Saoiabi A (2004). Retention of fluoride ions from aqueous solution using porous hydroxyapatite: structure and conduction properties, J. Hazard. Mater. 114:41-44. Crossref |
||||
JCPDS (Joint Committee on Powder Diffraction Standards) cards, (DCPD card number 09-0077). | ||||
JCPDS (Joint Committee on Powder Diffraction Standards) cards, (L-Hap card number 9-432). | ||||
Jiménez-Reyes M, Solache-Ríos M (2010). Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite, J. Hazard. Mater. 180(1-3):297-302. Crossref |
||||
Kalimuthu P, Natrayasamy V (2014). Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption. Carbohydrate Polymers, 112:662-667. Crossref |
||||
Kamble SP, Jagtap S, Labhsetwar NK, Thakare D, Godfrey S Devotta S, Rayalu SS (2007). Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chem. Eng. J. 129:173-180. Crossref |
||||
Kevin JR, Kenneth TS (2014). Measurement of fluoride substitution in precipitated fluorhydroxyapatite nanoparticles. J. Fluorine Chem. 161:102-109. Crossref |
||||
Larsen MJ, Pearce EIF, Jensen SJ (1993). Defluoridation of Water at High pH with Use of Brushite, Calcium Hydroxide, and Bone Char. J. Dent. Res. 72:15-19. Crossref |
||||
Le Geros RZ, Lee D, Quirolgico G, Shirra WP, Reich L (1983). In vitro formation of Dicalcium Phosphate Dihydrate CaHPO4.2H2O, Scanning Electron Microscopy, pp. 407-418. Pubmed |
||||
Lerch P, Lemp R, Kraheebuhl U, Bosset J (1966). Etude de l'hydrolyse de l'orthophosphate dicalcique dihydrat’e. Chimia, 20:430-432. | ||||
Low KS, Lee CK, Leo AC (1995). Removal of metals from electroplating wastes using banana pith, Bioresour. Technol. 51:227-231. Crossref |
||||
Lusvardi G, Malavasi G, Menabue L, Saladini M (2002). Removal of cadmium ion by means of synthetic hydroxyapatite,Waste Manag. 22:853-857. Crossref |
||||
Maiti GC, Freund F (1981). Influence of fluorine substitution on the proton conductivity of hydroxyapatite. J. Chem. Soc. Dalton Trans. 4:949-955. Crossref |
||||
Mameri N, Yeddou AR, Lounici H, Lounici D, Belhocine H, Grib BB (1998). Defluoridation of serpentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes, Water Res. p.32. | ||||
Manzola AS, Mgaidi A, Laouali MS, El Maaoui M (2014). On precipitated calcium and magnesium phosphates during hard waters softening by monosodium phosphate. Desalination and water treatment: 52(25-27):4734-4744. | ||||
Masamoto T, Tetsuji C (2004). Reaction between calcium phosphate and fluoride in phosphogypsum. J. Eur. Ceramic Soc. 26(4-5):767-770. | ||||
Masanobu K, Ryohei I, Koji I (2013). Preparation and evaluation of spherical Ca-deficient hydroxyapatite granules with controlled surface microstructure as drug carriers. Mat. Sci. Eng. C. 33(4):2446-2450. Crossref |
||||
Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Ocampo-Perez R, Flores-Cano JV, Berber-Mendoza MS (2014). Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J. Indus. Eng. Chem. 20(6):4014-4021. Crossref |
||||
Meenakshi S, Anitha P, Karthikeyan G, Appa Rao BV (1991). The pH dependence of efficiency of activated alumina in defluoridation of water, Indian. J. Environ. Prot. 11:511-513. | ||||
Meenakshi S, Viswanathan N (2007). Identification of selective ion exchange resin for fluoride sorption, J. Colloid Interface Sci. 308:438-450. Crossref |
||||
Mourabet MM, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A (2012). Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology, J. Saoudi Chem. Soc. Crossref |
||||
Nash CL, Liu JC (2010). Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process. Separation and Purification Technology, 74(3):329-335. Crossref |
||||
Okazaki M, Aoba T, Doi Y, Takahashi J, Moriwaki J (1981). Solubility and crystallinity in relation to fluoride content of fluoridated hydroxyapatites. J. Dent. Res. 60:845-849. Crossref |
||||
Okazaki M (1992). Heterogeneous synthesis of fluoridated hydroxyapatites. Biomat.13:749-754. Crossref |
||||
Rapport Mission Internationale d'Enquête de la Fédération Internationale des Ligues des Droits de l'Homme (2002), N° 341 octobre. | ||||
Rao NV, Mohan R, Bhaskaran CS (1998). Studies on defluoridation of water, J. Fluorine Chem. 41:17-24. Crossref |
||||
Sairam CS, Natrayasamy V, Meenakshi S (2008). Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies, J. Hazard. Mater. 155(1-2):206-215. Crossref |
||||
Sandrine B, Ange N, Didier B, Eric C, Patrick S (2007). Removal of aqueous lead ions by hydroxyapatite: equilibria and kinetic process, J. Hazard. Mater. 139:443-446. Crossref |
||||
Sanjay PK, Priyadarshini D, Sadhana SR, Nitin KL (2009). Defluoridation of drinking water using chemically modiï¬ed bentonite clay. Desalination 249(9):687-693. | ||||
Sekar C, Kanchana P, Nithyaselvi R, Girija EK (2009). Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal. Mater. Chem. Phys. 115(1):21-27. Crossref |
||||
Smiciklas I, Dimovic S, Plecas I, Mitric M (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite, Water Res. 40:2267-2274. Crossref |
||||
Sumit G, Rajkamal B, Sampath KTS (2012). Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J. Mechan. Behav. Biomed. Mater. 7:69-76. Crossref |
||||
Sundaram CS, Natrayasamy V, Meenakshi S (2008). Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresource Technology, 99(17): 8226-8230. Crossref |
||||
Taewook Y, Chulki K, Jaeyoung J, Il Won K (2012). Regulating fluoride uptake by calcium phosphate minerals with polymeric additives. Colloids and Surfaces A: Physicochem. Eng. Aspects 401:126-136. Crossref |
||||
Takahashi T, Tanase S, Yamamoto O (1978). Electrical conductivity of some hydroxyapatites. Electrochim Acta. 23:369-373. Crossref |
||||
Tse-Ying Liu, San-Yuan Chen, Dean-Mo Liu, Sz-Chian Liou (2005). On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Contr. Release 107(1):112-121. Crossref |
||||
UNICEF (1998). Fluoride in water: An overview." WES (Warter Environment & Sanitation) Section, Programme Division, UNICEF 3 UN Plaza, New York, NY, USA 10017 Phone: (212) 824-6000 Fax: (212) 824-6480 | ||||
Vega ED, Pedregosa JC, Narda GE, Morando PJ (2003). Removal of oxovanadium (IV) from aqueous solutions by using commercial crystalline calcium hydroxyapatite, Water Res. 37:1776-1782. Crossref |
||||
World Health Organisation (WHO) (1996). Fluoride, Guidelines for Drinking Water Quality, vol. II, 2nd ed., Geneva, pp. 231-237. | ||||
Wen L, Lei Z, Longhua P, Christian R (2011). Fluoride removal performance of glass derived hydroxyapatite. Mater. Res. Bull. 46(2):205-209. Crossref |
||||
Xiaolin Y, Shengrui T, Maofa G, Junchao Z (2013). Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydr. Polymers 92(1):269-275. Crossref |
||||
Yulun N, Chun H, Chuipeng K (2012). Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite. J. Hazard. Mater. pp. 233-234:194-199. | ||||
Yu W, Ningping C, Wei W, Jing C, Zhenggui W (2011). Enhanced adsorption of fluoride from aqueous solution onto nanosized hydroxyapatite by low-molecular-weight organic acids, Desalination, 276(1-3):161-168. Crossref |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0