African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1129

Review

Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: A review

Mohammad Ali Hajabbasi
  • Mohammad Ali Hajabbasi
  • Soil Science Department, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111- Iran.
  • Google Scholar


  •  Received: 09 July 2016
  •  Accepted: 22 August 2016
  •  Published: 30 November 2016

References

Abdel-Moghny Th, Mohammed RSA, El-Seyed E, Aly SM, Snousy MG (2012). Effect of soil texture on remediation of hydrocarbons-contaminated soil at El-Minia district, Upper Egypt. ISRN Chem. Eng. Article ID 406598:1-13.
Crossref

 

Abdullah W, Aljarallah R, Alrashidi A (2014). Hydrocarbon oil-contaminated soil assessment using electrical resistivity topography. J. Eng. Res. 2(3):67-85.
Crossref

 
 

Abhilash PC, Powell JR, Singh HB, Singh BK (2012). Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol. 30:416-420.
Crossref

 
 

Adams RH, Guzma’n Osorio FJ, Zavala Cruz J (2008a). Water repellency in oil contaminated sandy and clayey soils. Int. J. Environ. Sci. Technol. 5(4):445-454.
Crossref

 
 

Adams RH, Cruz JZ, Morales GF (2008b). Concentracio’n residual de hidrocarburos en suelos del tro’pico II: afectacio’n a la fertilidad y su recuperacio’n. Interciencia 33(7):483-489.

 
 

Adesodun JK, Davidson DA, Hopkins DW (2005). Micromorphological evidence for changes in soil faunal activity following application of sewage sludge and biocide. Appl. Soil Ecol. 29:39-45.
Crossref

 
 

Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011). Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J. Hazard. Mater. 186:1568-1575.
Crossref

 
 

Ahn CK, Kim YM, Woo SH, Park JM (2008). Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J. Hazard Mater. 154(1-3):153-160.
Crossref

 
 

Albergaria JT, Alvim-Ferraz MCM, Delerue-Matos CM (2008). Soil vapor extraction in sandy soils: Influence of airflow rate. Chemosphere 73:1557-1561.
Crossref

 
 

Albergaria JT, Alvim-Ferraz MCM, Delerue-Matos CM (2010). Remediation of soils contaminated with trichloroethylene. Environ. Biotechnol. 6(2):37-41.

 
 

Amellal N, Portal JM, Vogel T, Berthelin J (2001). Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation 12:49-57.
Crossref

 
 

Alrumman SA, Standing DB, Paton GI (2015). Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J. King Saud University - Science 27(1):31-41.

 
 

Arora PK, Srivastava A, Singh VP (2010). Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J. Bioremediat. Biodegrad. 1(3):112.
Crossref

 
 

Ayotamuno MJ, Kogbara RB, Ogaji SOT, Probert SD (2006). Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria. Appl. Energy 83:1249-1257.
Crossref

 
 

Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009). Accumulation and fragmentation of plastic debris in global environments. Phil. Trans. R. Soc. B 364:1985-1998.
Crossref

 
 

Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006). Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57(2):437-447.
Crossref

 
 

Bharti BP, Vastava AS, Soni N, Tiwari A, More S, Choudhary JR (2014). Phytoremediation of Heavy Metal Toxicity and Role of soil in Rhizobacteria. Int. J. Sci. Res. Publ. 4(1):1-5.

 
 

Bierkens J, Geerts L (2014). Environmental hazard and risk characterisation of petroleum substances: a guided "walking tour" of petroleum hydrocarbons. Environ. Int. 66:182-193
Crossref

 
 

Blakely JK, Neher DA, Spongberg AL (2002). Soil invertebrates and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl. Soil Ecol. 21:71-88.
Crossref

 
 

Bojes HK, Pope PG (2007). Characterization of EPA's 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in tank bottom solid and associated contaminated soils at oil exploration and production sites in Texas. Regul. Toxicol. Pharm. 47:288-295.
Crossref

 
 

Boonsaner M, Borrirukwisitsak S, Boonsaner A (2011). Phytoremediation of BTEX contaminated soil by Canna x generalis. Ecotoxicol. Environ. Saf. 74:1700-1707.
Crossref

 
 

Buswell JA (1994). Potential of spent mushroom substrate for biore- mediation purposes. Compost Sci. Util. 2:31-36.
Crossref

 
 

Carvalho MM, Vila MC, Delerue-Matos C, Oliva-Teles MT, Fiúza M (2015). Assisted bioremediation tests on three natural soils contaminated with benzene. Eur. J. Soil Sci. 4(3):153-160.
Crossref

 
 

Caravaca F, Figueroa D, Roldan A, Azcon-Aguilar C (2003). Alteration in Rhizosphere soil properties of afforested Rhamnus lycioides seedlings in short-term response to mycorrhizal inoculation with Glomus intraradices and organic amendment. Environ. Manag. 31(3):412-420.
Crossref

 
 

Carmichael LM, Pfaender FK (1997). The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation 8(1):1-13.
Crossref

 
 

Chaillan F, Chaineau CH, Point V, Saliot A, Oudot J (2006). Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ. Pollut. 144:255-265.
Crossref

 
 

Chaı^neau CH, Rougeux G, Ye’pre’mian C, Oudot J (2005). Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol. Biochem. 37:1490-1497.
Crossref

 
 

Chakraborty S, Weindorf DC, Zhu Y, Li B, Morgan CLS, Ge YY, Galbraith J (2012). Spectral reflectance variability from soil physicochemical properties in oil contaminated soils. Geodrma.177–178:80-89.
Crossref

 
 

Chiou CT, Shoup TD (1985). Soil sorption of organic vapors and effects of humidity on sorption mechanism and capacity: Environ. Sci. Technol. 19:1196-1200.
Crossref

 
 

Cook RL, Landmeyer JE, Atkinson B, Messier JP, Nichols EG (2010) Field note: successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: trends, trials, and tribulations. Int. J. Phytorem. 12:716-732.
Crossref

 
 

Cook RL, Hesterberg D (2013). Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int. J. Phytorem. 15:844-860.
Crossref

 
 

Cruz-Hernandez A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernandez-Perrino FJ, and Gutiérrez-Rojas M (2013). Inoculation of seed-borne fungus in the rhizosphere of Festucaarundinaceapromotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261-270.
Crossref

 
 

Das N, Chandran P (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. Article ID:941810.

 
 

Dettenmaier EM, Doucette WJ, Bugbee B (2009). Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 43:324-329.
Crossref

 
 

Edenborn HM, Zenone VE (2007). Rapid estimation of TPH reduction in oil-contaminated soils using the MED method. Publication no. DOE/NETL-IR-2007-142. Department of Energy, National Energy Technology Laboratory, Pittsburg. 

View

 
 

Edwards NT, Ross-Todd BM, Garver EG (1982). Uptake and metabolism of 14C anthracene by soybean, Glycine max. Environ. Exp. Bot. 29(3):349-357.
Crossref

 
 

Falciglia PP, Giustra MG, Vagliasindi FGA (2011). Soil texture affects adsorption capacity and removal efficiency of contaminants in ex situ remediation by thermal desorption of diesel contaminated soils. Chem. Ecol. 27:119-130.
Crossref

 
 

Fernandez F, Quigley RM (1985). Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can. Geotech. J. 22:205-214.
Crossref

 
 

Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014). Plant microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr. Opin. Biotechnol. 27:168-175.
Crossref

 
 

Figueiredo MA, Praca Leitea MG, Kozovitsb AR (2016). Influence of soil texture on nutrients and potentially hazardous elements in E. erythropap. Int J. Phytorem. 18(5):487-493.
Crossref

 
 

Galitskaya PY, Gumerova RK, Selivanovskaya SY (2014). Bioremediation of Oil Waste under Field Experiment. World Appl. Sci. J. 30(11):1694-1698.

 
 

Gao Y, Collins CD (2009). Uptake pathways of polycyclic aromatic hydrocarbons in white clover. Environ. Sci. Technol. 43:6190-6195.
Crossref

 
 

Gana SE, Lau V, Ng HK (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 172:532-549.
Crossref

 
 

Gaskin SE, Bentham RH (2010). Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci. Total Environ. 408:3683-3688.
Crossref

 
 

Gennadiev A, Yu N, Pikovskii I, Tsibart AS, Smirnova MA (2015). Hydrocarbons in Soils: Origin, Composition, and Behavior (Review). Eur. Soil Sci. 48:1076-1089.
Crossref

 
 

Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges, Plant Sci. 176:20-30.
Crossref

 
 

Germaine KJ, Byme J, Liu X, Keohane J, Culhane J, Lally RD, Kiwanuka S, Ryan D, Dowling DN (2015). Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Front Plant Sci. 5:756.
Crossref

 
 

Guimara DV, ria Silva Gonzaga MI, da Silva T-cio O, da Silva TL, da Silva Dias N and Silva Matias MI (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till. Res. 126:177-182.
Crossref

 
 

Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR, Greenberg BM (2009). Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ. Sci. Technol. 43:4472-4479
Crossref

 
 

Habe H, Omori T (2003). Genetics of Polycyclic Aromatic Hydrocarbon Metabolism in Diverse Aerobic Bacteria. Biosci. Biotechnol. Biochem., 67:225-243.
Crossref

 
 

Haslmayr HP, Meissner S, Langella F, Baumgarten A, Geletneky J (2014) Establishing best practice for microbially aided phytoremediation. Environ. Sci. Pollut. Res. 21:6765-6774
Crossref

 
 

Hechmi N, Ben Aissa N, Abdennaceur H, Jedidi N (2013). Phytoremediation potential of mayze (Zea mays L.) in co-contaminated soil with pentachlorophenol and cadmium. Int. J. Phytorem. 15:703-713.
Crossref

 
 

Hentati O, Lachhab R, Ayadi M, Ksibi M (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ. Monit. Assess. 185:2989-2998.
Crossref

 
 

Herrick JE, Whitford WG, de Soyza AG, Van Zee JW, Havstad KM, Seybold CA, Walton M (2001). Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 44:27-35.
Crossref

 
 

Hreniuc M, Coman M, Cioruţa B (2015). Consideration regarding the soil pollution with oil products in Sacel-Maramures. International Conference of scientific paper AFASES. Brasov. pp. 28-30.

 
 

Huesemann MH, Hausmann TS, Fortman TJ (2004). Does bioavailability limit biodegradation? a comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261-274.
Crossref

 
 

Isitekhale HE, Aboh SF, Eniola RI, Oseghale ES (2013). Effects of Phytoremediation on Soil Total Hydrocarbon Content. J. Biol. Agric. Healthcare 3(5):54-59.

 
 

Jesus JM, Danko AS, Fiúza A, Borges MT (2015). Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci. Pollut. Res. 22:6511-6525.
Crossref

 
 

Jing Y-de, HE Z, Yang X (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. Sci. B 8(3):192-207.
Crossref

 
 

Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006). Ryegrass enhancement of biodegradation in dieselcontaminated soil. Environ. Exp. Bot. 55:110-119.
Crossref

 
 

Kaimi E, Mukaidani T, Tamaki M (2007). Screening of twelve plant species for phytoremediation of petroleum hydrocarbon contaminated soil. Plant Prod. Sci. 10(2):211-218.
Crossref

 
 

Kalliola S, Repo E, Sillanpää M, Singh Arora J, Heb J, John VT (2016). The stability of green nanoparticles in increased pH and salinity for applications in oil spill-treatment. Colloids and Surfaces A: Physicochem. Eng. Aspects 493:99-107.
Crossref

 
 

Kamath R, Rentz JA, Schnoor JL, Alvarez PJJ (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Stud. Surf. Sci. Catal.151:447-478.
Crossref

 
 

Kang JW (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol. Lett. 36:1129-1139.
Crossref

 
 

Khan AG (2005). Role of Soil Microbes in The Rhizospheres of Plants Growing on Trace Metal Contaminated Soils in Phytoremediation. J. Trace Elem. Med. Biol.18:355-364.
Crossref

 
 

Khan S, Afzal M, Iqbal S, Khan QM (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317-1332.
Crossref

 
 

Laird DA, Chang CW (2013). Long-term impacts of residue harvesting on soil quality. Soil Till. Res. 134:33-40.
Crossref

 
 

Lamers LPM, vanDiggelen JMH, OpdenCamp HJM, Visser EJW, Lucassen ECHET, Vile MA, Jetten MSM, Smolders AJP, Roelofs JGM (2012). Microbial ransformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front. Microbiol. 3:156.
Crossref

Langer I, Syafruddin S, Steinkellner S, Puschenreiter M, Wenze WW (2010). Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization. Plant Soil 332:339-355.
Crossref

 

Lawton R J, de Nys R, Magnusson ME, Paul NA (2015). The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater macroalga. Algal Res. 12:213-220.
Crossref

 
 

Lee DH, Cody RD, Kim DJ, Choi S (2002). Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil. Environ. Int. 27:681-688.
Crossref

 
 

Lehmann BLJ, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luiza˜o FJ, Petersen J, and Neves EG (2006). Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 70:1719-1730.
Crossref

 
 

Li CH, Ma BL, Zhang TO (2002). Soil Bulk Density Effects on Soil Microbial Population and Enzyme Activities During The Growth of Maize (Zea Mays) Planted in Large Pots Under Field Exposure. J. Plant. Sci. 82:147-154.

 
 

Liu PG, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS (2011). Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. Int. Biodeterior. Biodegrad. 65:1119-1127.
Crossref

 
 

Liu J, Liu K, Huang X (2016). Effect of sedimentary heterogeneities on hydrocarbon accumulations in the Permian Shanxi Formation, Ordos Basin, China: Insight from an integrated stratigraphic forward and petroleum system modeling. Mar. Pet. Geol. 76:412-431.
Crossref

 
 

Loades KW, Benghough AG, Bransby MF, Hallet PD (2013). Reinforcement of soils by fibrous roots. In "Enhancing, Understanding and Quantification of Soil-Root Interaction". D. Timlin and L. R. Ahuja. American Society of Agronomy. Madison, WI. P 200.
Crossref

 
 

Lone MI, He Z, Stoffella PJ, Yang X (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B 9(3):210-22.
Crossref

 
 

Lotfinasabasl SV, Gunale R, Rajurkar NS (2013). Petroleum Hydrocarbons Pollution in Soil and its Bioaccumulation in mangrove species, Avicennia marina from Alibaug Mangrove Ecosystem, Maharashtra, India. Int. J. Adv. Res. Technol. 2(2):1-7.

 
 

Macci C, Doni S, Peruzzi E, Bardella S, Filippis G, Ceccanti B, Masciandaro G (2013). A real-scale soil phytoremediation. Biodegradation 24:521-538.
Crossref

 
 

Maletić S, Dalmacija B, Rončević S (2013). Petroleum Hydrocarbon Biodegradability in Soil – Implications for Bioremediation InTech (Open Access). Available at: 

View

 
 

Mao D, Lookman R, Van De Weghe W, Weltnes R, Vanermen G, De Brucker N and Diels L (2009). Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC–GCXGC analysis. Chemosphere 77:1508-1513
Crossref

 
 

Marchal G, Smith KEC, Mayer P, de Jonge LW, Karlson UG (2014). Impact of soil amendments and the plant rhizosphere on PAH behavior in soil. Environ. Pollut. 188:124-131.
Crossref

 
 

Marek S, Martin K, Martina M, Robert R (2009). Soil flushing by surfactant solution: pilot-scale demonstration of complete technology, J. Hazard. Mater. 163(1):410-417.
Crossref

 
 

Marı’n-Garcı´ DC, Adams RH and Herna’ndez-Barajas H (2016). Effect of crude petroleum on water repellency in a clayey alluvial soil. Int. J. Environ. Sci. Technol. 13:55-64.
Crossref

 
 

Marinescu M, Toti M, Dumitru M, Ignat P, Anghel A, Marinescu M (2010). Soil pollution with crude oil- A case study in Braila County. Vol. LIII, 2010, ISSN 1222-5339. Agrochemistry and Environmental Protection of Bucharest Scientific Papers, Series A, UASVM Bucharest.

 
 

Masakorala K, Yao J, Chandankere R, Liu H. Liu W, Cai M and Choi MF (2014). A combined approach of physicochemical and biological

 
 

Methods for the characterization of petroleum hydrocarbon-

 
 

Metay A, Alves Moreira Aj A, Bernoux M, Boyer T, Douzet JM, Feigl B, Feller C, Maraux F, Oliver R, Scopel E (2007). Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). Soil Till. Res. 94:122-132.
Crossref

 
 

Moubasher HA, Hegazy AK, Mohamed NH, Moustafa YM, Kabiel HF, Hamad AA (2015). Phytoremediation of soils polluted with crude petroleum oil using Bassiascopariaand its associated rhizosphere microorganisms. Int. Biodeterior. Biodegrad. 98:113-120.
Crossref

 
 

Nieber J, Severson L, Grewe N (2011). Hydrologic characteristics of contaminated soils at the national crude oil spill fate and natural attenuation research site. In: Geological Society of America annual meeting, Minneapolis, MN, 9–12 October, paper 136-1. Available at: https://gsa.confex.com/gsa/2011AM/finalprogram/abstract_193916.htm

 
 

Nichols EG, Cook RL, Landmeyer JE, Atkinson B,Malone DR, Shaw G, Woods L (2014). Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA. Remediat. J. 24(2):29-46.
Crossref

 
 

Neira J, Ortiz M, Morales L, Acevedo E (2015). Oxygen diffusion in soils: Understanding the factors and processes needed for modeling. Chilean J. Agric. Res. 75:35-44.
Crossref

 
 

Njoku KL, Akinola O, Oboh BO (2008). Growth and performance of Glycine max L. (Merrill) in crude oil contaminated soil augmented with cow dung. Nat. Sci. 6(1):48-58.

 
 

Njoku KL, Akinola O, Oboh BO (2009). Phytoremediation of crude oil contaminated soil: the effects of growth of Glycin Max. on the physico- chemistry and crude oil contents of soil. Nat. Sci. 7(10):79-87.

 
 

Oliveira V, Gomes NCM, Almeida A, Silva AMS, Silva H, Cunha A (2015). Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb. Ecol. 69:1-12.
Crossref

 
 

Onojake MC, Osuji LC (2012). Assessment of the Physico-chemical Properties of Hydrocarbon Contaminated Soil. Arch. Appl. Sci. Res. 4(1):48-58.

 
 

Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007). Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int. J. Environ. Res. 1(4):307-320.

 
 

Padmavathiamma PK, Ahmed M, Rahman HA (2014). Phytoremediation - A sustainable approach for contaminant remediation in arid and semi-arid regions – A review. Emir. J. Food Agric. 26 (9):757-772.
Crossref

 
 

Pandey S, Singh DK (2004). Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55:197-205.
Crossref

 
 

Pathak H, Bhatnagar K, Jaroli DP (2011). Physico-chemical Properties of Petroleum Polluted Soil Collected from Transport Nagar (Jaipur). IJ FALS 1(3):84-89.

 
 

Peng S, Zhou Q, Cai Z, Zhang Z (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J. Hazard. Mater. 168:1490-1496.
Crossref

 
 

Phillips LA, Greer CW, Farrell RE, Germida JJ (2012). Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl. Soil Ecol. 52:56-64
Crossref

 
 

Pinedo J, Ibá-ez R, Primo Ó, Gómez P, Irabien Á (2014). Preliminary assessment of soil contamination by hydrocarbon storage activities: Main site investigation selection. J. Geochem. Explor. 147:283-290.
Crossref

 
 

Potashev K, Sharonova N, Breus I (2014). The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage. Sci. Total Environ. 485-486:71-82.
Crossref

 
 

Qin G, Gong D, Fan MY (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int. Biodeteriror. Biodegrad. 85:150-155.
Crossref

 
 

Quyum A (2000). Water migration through hydrophophobic soil. Master of Science Thesis. Department of Civil Engineering. Calgary, Canada.

 
 

Quyum A, Achari G, Goodman RH (2002). Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils. Sci. Total Environ. 296:77-87.
Crossref

 
 

Rascio N, Navari-Izzo F (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180:169-181.
Crossref

 
 

Bharti RP, Vastava AS, Soni N, Tiwari A, Shivbhanu M, Choudhary JR (2014). Phytoremediation of Heavy Metal Toxicity and Role of soil in Rhizobacteria. Int. J. Sci. Res. Publications 4(1):1-5.

 
 

Razafimbelo T, Chevallier T, Albrecht A, Chapuis-Lardy L, Rakotondrasolo FN, Michellon R, Rabeharisoa L, Bernoux M (2013). Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils. Sci. Agric. 70(3):204-208.
Crossref

 
 

Reilley KA, Banks MK, Schwab AP (1996). Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25:212-219.
Crossref

 
 

Rengasamy P, Olsson KA (1991). Sodicity and soil structure. Aust.J. Soil Res. 29:935-952.
Crossref

 
 

Riser-Roberts E (1998). Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes. Lewis Publisher (CRC), Washington DC.
Crossref

 
 

Sarkar D, Furguson M, Datta R, Birnbaum S (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136:187-195.
Crossref

 
 

Scherr K, Aichberger H, Braun R, Loibner AP (2007). Influence of soil fractions on microbial degradation behavior of mineral hydrocarbons. Eur. J. Soil Biol. 43:341-350.
Crossref

 
 

Schwab AP, Banks MK (1994). Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In T. Anderson and J. Coates eds., Bioremediation through Rhizosphere Technology. Am. Chem. Soc. Washington D.C. 12:132-141.
Crossref

 
 

Semple KT, Morriss AWJ, Paton GI (2003). Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 54(4):809-818.
Crossref

 
 

Siddiqui S Adams WA (2002). The fate of diesel hydrocarbons in soils and their effect on the germination of perennial ryegrass. Environ Toxicol. 17(1):49-61.
Crossref

 
 

Socolowski F, Vieira DCM, Simao E, Takaki M (2010). Influence of light and temperature on seed germination of Cereus pernambucensis Lemaire (Cactaceae). Biota Neotrop. 10(2):53-56.
Crossref

 
 

Sonawdekar S (2012). Bioremediation: A boon to hydrocarbon degradation. Int. J. Environ. Sci. 2(4):2408-2424.

 
 

Sterling MC, Bonner JS, Ernest ANS, Page CA, Autenrieth RL (2004). Characterizing aquatic sediment–oil aggregates using in situ instruments. Mar. Pollut. Bull. 48:533-542.
Crossref

 
 

Sublette K, Key KC, Bovaird B (2010) Combating hydrophobicity in the revegetation of hydrocarbon-impacted soils. In: 17th annual international petroleum biofuels environmental conference, San Antonio, TX, August 30-September 2. 

View

 
 

Sylvia DM (2005). Principles and Applications of Soil Microbiology. Upper Saddle River, NJ: Pearson Prentice Hall.

 
 

Tan Z, Lal R, Owens L, Izaurralde RC (2007). Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till. Res. 92:53-59.
Crossref

 
 

Tang J, Wang R, Niu X, Wang M and Zhou Q (2010a). Characterization on the rhizoremediation of petroleum contaminated soil as affected by different influencing factors. Biogeosci. 7:4665-4688.
Crossref

 
 

Tang J, Wang R, Niu X, Zhou Q (2010b). Enhancement of soil petroleum remediation by using a combination of ryegrass (Loliumperenne) and different microorganisms. Soil Till. Res. 110:87-93.
Crossref

 
 

Técher D, Laval-Gilly P, Henry S, Bennasroune A, Formanek P, Martinez-Chois C, D'Innocenzo M, Muanda F, Dicko A, RejsekK, Falla J (2011). Contribution of Miscanthus x giganteusroot exudates to the biostimulation of PAH degradation: an in vitro study. Sci. Total Environ. 409:4489-4495.
Crossref

 
 

Técher D, Martinez-Chois C, Laval-Gilly P, Henry S, Bennasroune A, D'Innocenzo M, Falla J (2012). Assessment of Miscanthus x giganteus for rhizoremediation of long term PAH contaminated soils. Appl. Soil Ecol. 62:42-49.
Crossref

 
 

Thavamani P, Smith E, Kavitha R, Mathieson G, Megharaj M, Srivastava P, Naidu R (2015). Risk based land management requires focus beyond the target contaminants - A case study involving weathered hydrocarbon contaminated soils. Environ. Technol. Innov. 4:98-109.
Crossref

 
 

Tejeda-Agredano MC, Gallego S, Vila J, Grifoll M, Ortega-Calvo JJ, Cantos M (2013). Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol. Biochem. 57:830-840.
Crossref

 
 

Towell MG, Bellarby J, Paton GI, Coulon F, Pollard SJT, Semple KT (2011). Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environ. Pollut. 159:515-523.
Crossref

 
 

Wang MC, Chen YT, Chen SH, Chien SC, Sunkara SV (2012). Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa.Chemosphere 87:217-225.
Crossref

 
 

Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A (2013). Phytoextraction of metals and rhizoremediation of PAHs in cocontaminatedsoil by co-planting of Sedum alfrediiwith ryegrass (Loliumperenne) or castor (Ricinuscommunis). Int. J. Phytoremed. 15:283-298.
Crossref

 
 

Wang K, Chen XX, Zhu ZQ, Huang HG, Li TQ, Yang X (2014). Dissipation of available benzo(a)pyrene in aging soil co-contaminated with cadmium and pyrene. Environ. Sci. Pollut. Res. 21:962-971.
Crossref

 
 

Waqas M, Khan S, Qing H, Reid BJ, Chao C (2014). The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativaL. Chemosphere 105:53-61.
Crossref

 
 

Wen J, Yi Y, Zeng G (2016). Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J. Environ. Manage. 178:63-69.
Crossref

 
 

Wolejko E, Wydro U, Łoboda T (2016). The ways to increase efficiency of soil bioremediation. Ecol. Chem. Eng. S. 23(1):155-174.
Crossref

 
 

Xiao R, Bai J, Wang J, Lu Q, Zhao Q, Cui B, Liu X (2014). Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates. Chemosphere 110:8-16.
Crossref

 
 

Yanai J, Zhao FJ, McGrath SP, Kosaki T (2006). Effect of soil characteristics on Cd uptake by the hyper accumulator Thlaspi caerulescens. J. Environ. Pollut. 139:167-175.
Crossref

 
 

Ying W, Jiang F, Qianxin L, Xianguo L, Xiaoyu W, Guoping W (2013). Effects of Crude Oil Contamination on Soil Physical and Chemical Properties in Momoge Wetland of China. Chin. Geogr. Sci. 23:708-715.
Crossref

 
 

Zahed MA, Aziz HA, Isa MH, Mohajeri L (2010). Enhancement biodegradation of n-alkanes from crude oil contaminated seawater. Int. J. Environ. Res. 4(4):1735-6865.

 
 

Zhang Z, Zhou Q, Peng S, Cai Z (2010). Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci. Total Environ. 408:5600-5605.
Crossref

 
 

Zhang J, Dai J, Chen H, Du X, Wang W, Wang R (2012). Petroleum contamination in groundwater/air and its effects on farmland soil in the outskirt of an industrial city in China. J. Geochem. Explor. 118:19-29.
Crossref

 
 

Zhang J, Fan S, Yang J, Du X, Li F, Hou H (2014). Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set. Sci. Total Environ. 476-477:258-265.
Crossref