African Journal of
Food Science

  • Abbreviation: Afr. J. Food Sci.
  • Language: English
  • ISSN: 1996-0794
  • DOI: 10.5897/AJFS
  • Start Year: 2007
  • Published Articles: 978

Full Length Research Paper

Degradation of phytate in composite wheat/cassava/sorghum bread by activation of intrinsic cereal phytase

Serafina Lídia Vilanculos
  • Serafina Lídia Vilanculos
  • Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Eduardo Mondlane, P.O. Box 257, Maputo, Moçambique.
  • Google Scholar
Ulf Svanberg
  • Ulf Svanberg
  • Department of Biology and Biological Engineering / Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
  • Google Scholar


  •  Received: 24 August 2020
  •  Accepted: 30 November 2020
  •  Published: 31 January 2021

References

Akubor PI, Badifu GIO (2004). Chemical composition, functional properties and baking potential of African breadfruit kernel and wheat flour blends. International Journal of Food Science and Technology 39(2):223-229.
Crossref

 

Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology 48(6):724-729.
Crossref

 
 

Brinch-Pedersen H, Madsen CK, Holme IB, Dionisio G (2014). Increased understanding of the cereal phytase complement for better mineral bioavailability and resource management. Journal of Cereal Science 59(3):371-381.
Crossref

 
 

Buddrick O, Jones OAH, Cornell HJ, Small DM (2014) The influence of fermentation processes and cereal grains in wholegrain bread on reducing phytate content. Journal of Cereal Science 59(1):3-8.
Crossref

 
 

Carlsson NG, Bergman EL, Skoglund E, Hasselblad K, Sandberg AS (2001). Rapid Analysis of Inositol phosphate. Journal of Agricultural and Food Chemistry 49(4):1695-1701.
Crossref

 
 

Davidsson L, Galan P, Kastenmayer P, Cherouvrier F, Juillerat MA, Hercberg S, Hurrel RF (1994). Iron bioavailability studied in infants - the influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatric Research 36(6):816-822.
Crossref

 
 

Davidsson L, Dimitriou T, Walczyk T, Hurrell RF (2001). Iron absorption from experimental infant formulas based on pea (Pisum sativum)-protein isolates: the effect of phytic acid and ascorbic acid. British Journal of Nutrition 85(1):59-63.
Crossref

 
 

Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell RF (2002). The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. Journal of Food Science 67(9):3484-3488.
Crossref

 
 

Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell RF (2003). Phytic acid degradation in complementary foods using phytase naturally occurring in whole grains cereals. Journal of Food Science 68(5):1855-1859.
Crossref

 
 

Engelen JA, van der Heeft FC, Randsdorp PHG, Somers WAC, Schaefer J, van der Vat BJC (2001). Determination of phytase activity in feed by a colorimetric enzymatic method: Collaborative interlaboratory study. Journal of AOAC International 84(3):629-633.
Crossref

 
 

FAOStat (2018). Food and Agriculture Organization of the United Nations. Available at: 

View

 
 

Fredrikson M, Carlsson NG, Almgren A, Sandberg AS (2002). Simultaneous and Sensitive Analysis of Cu, Ni, Zn, Co, Mn, and Fe in Food and Biological Samples by Ion Chromatography. Journal of Agricultural and Food Chemistry 50(1):59-65.
Crossref

 
 

Frontela C, Ros G, Martinez C (2011). Phytic acid content and "in vitro" iron, calcium and zinc bioavailability in bakery products: The effect of processing. Journal of Cereal Science 54(1):173-179.
Crossref

 
 

Fretzdorff B, Brümmer JM (1992). Reduction of phytic acid during breadmaking of whole-meal bread. Cereal Chemistry 69(3):266-270.

 
 

Hallberg L, Brune M, Rossander L (1989). Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. American Journal of Clinical Nutrition 49(1):140-144.
Crossref

 
 

Haros M, Rosell CM, Benedito C (2001). Fungal phytase as a potential bread-making additive. European Food Research and Technology 213(4-5):317-322.
Crossref

 
 

Hotz C, Gibson RS (2001). Assessment of home-based processing methods to reduce the phytate content and phytate/zinc molar ratio of white maize (Zea mays). Journal of Agricultural and Food Chemistry 49(2):692-698.
Crossref

 
 

Hotz C, Gibson RS, Temple L (2001). A home-based method to reduce phytate content and increase zinc bioavailability in maize-based complementary diets. International Journal of Food Sciences and Nutrition 52(2):133-142.
Crossref

 
 

Hunt JR (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. American Journal of Clinical Nutrition 78(3):633S-639S.
Crossref

 
 

Hurrell RF, Reddy, MB, Burri J, Cook JD (2002). Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods. British Journal of Nutrition 88(2):117-123.
Crossref

 
 

Hurrell RF (2004). Phytic acid degradation as a means of improving iron absorption. International Journal for Vitamin and Nutrition Research 74:445-452.
Crossref

 
 

Kayodé APP, Hounhouigan JD, Nout MJR (2007). Impact of brewing process operations on phytate, phenolic compounds and in vitro solubility of iron and zinc in opaque sorghum beer. LWT-Food Science and Technology 40(5):834-841.
Crossref

 
 

Koréissi-Dembéle Y, Fanou-Fogny N, Moretti D, Schuth S, Dossa RAM, Egli I, Zimmermann MB, Brouwer ID (2013). Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis) meals in West African women. Plos One 8(10):e70613.
Crossref

 
 

Kruger J, Taylor JRN, Oelofse A (2012). Effects of reducing phytate content in sorghum through genetic modification and fermentation on in vitro iron availability in whole grain porridges. Food Chemistry 131(1):220-224.
Crossref

 
 

Kruger J, Oelofse A, Taylor JRN (2014). Effects of aqueous soaking on the phytate and mineral contents and phytate:mineral ratios of wholegrain normal sorghum and maize and low phytate sorghum. International Journal of Food Sciences and Nutrition 65(5):539-546.
Crossref

 
 

Lazarte CE, Carlsson NG, Almgren A, Sandberg AS, Granfeldt Y (2015). Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. Journal of Food Composition and Analysis 39:111-119.
Crossref

 
 

Leenhardt F, Levrat-Verny MA, Chanliaud E, Remesy C (2005). Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. Journal of Agricultural and Food Chemistry 53(1):98-102.
Crossref

 
 

Nävert B, Sandström B, Cederblad A (1985). Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition 53(1):47-53.
Crossref

 
 

Penella JMS, Collar C, Haros M (2008). Effect of Wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. Journal of Cereal Science 48(3):715-721.
Crossref

 
 

Porres JM, Etcheverry P, Miller DD, Lei XG (2001). Phytase and citric acid supplementation in whole - wheat bread improves phytate - phosphorus release and iron dialyzability. Journal of Food Science 66(4):614-619.
Crossref

 
 

Qazi IM, Wahab S, Shad AA, Zeb A, Ayuab M (2003). Effect of different fermentation time and baking on phytic acid content of whole-wheat flour bread. Asian Journal of Plant Sciences 2(8):597-601.
Crossref

 
 

Reale A, Konietzny U, Coppola R, Sorrentino E, Greiner R (2007). The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. Journal of Agricultural and Food Chemistry 55:2993-2997.
Crossref

 
 

Rosell CM, Santos E, Sanz-Penella JM, Haros M (2009). Wholemeal wheat bread: A comparison of different breadmaking processes and fungal addition. Journal of Cereal Science 50(2):272-277.
Crossref

 
 

Shen Y, Yin Y, Chavez ER, Fan MZ (2005). Methodological aspects of measuring phytase activity and phytate phosphorus content in selected cereal grains and digest of faeces of pigs. Journal of Agricultural and Food Chemistry 53(4):853-859.
Crossref

 
 

Tatala S, Svanberg U, Mduma B (1998). Low dietary iron availability is a major cause of anemia: a nutrition survey in the Lindi District of Tanzania. American Journal of Clinical Nutrition 68(1):171-178.
Crossref

 
 

Taylor PG, Méndez-Castellanos H, Martínez-Torres C, Jaffe W, López de Blanco M, Landaeta-Jiménez M, Leets I, Tropper E, Ramírez J, Casal MG, Layrisse M (1995). Iron bioavailability from diets consumed by different socioeconomic strata of the Venezuelan population. Journal of Nutrition 125(7):1860-1868.
Crossref

 
 

Türk M, Carlsson NG, Sandberg AS (1996). Reduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. Journal of Cereal Science 23(3):257-264.
Crossref