Full Length Research Paper
References
Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh VK, Rai LC (2014). Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J. Proteom. 96:271-290 |
|
Bengtsson G, Tranvik L (1989). Critical metal concentrations for forest soil invertebrates. Water Air Soil Pollut. 47:381-417. |
|
Bennett A, Bogorad L (1973). Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58:419-435. |
|
Bhagat N, Vermani M, Bajwa HS (2016). Characterization of heavy metal (cadmium and nickle) tolerant Gram negative enteric bacteria from polluted Yamuna River, Delhi. Afr. J. Microbiol. Res. 10(5):127-137. |
|
Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. |
|
Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R (2007). Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879-889. |
|
Bolhar-Nordenkampf H, Long S, Baker N, Oquist G, Schreiber U, Lechner E (1989). Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 497-514. |
|
Carfagna S, Lanza N, Salbitani G, Basile A, Sorbo S, Vona V (2013). Physiological and morphological responses of Lead or Cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). SpringerPlus 2:147. |
|
Dadheech N (2010). Desiccation tolerance in cyanobacteria. Afr. J. Microbiol. Res. 4(15):1584-1593. |
|
Flora S, Dube S, Arora U, Kannan G, Shukla M, Malhotra P (1995). Therapeutic potential of meso 2, 3-dimercaptosuccinic acid or 2, 3-dimercaptopropane 1-sulfonate in chronic arsenic intoxication in rats. Biometals 8:111-116. |
|
Giller KE, Witter E, Mcgrath SP (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30:1389-1414. |
|
Guo YP, Zhou HF, Zhang LC (2006). Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci. Hortic. 108:260-267. |
|
Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ (2014). Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865-886. |
|
Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. 99:6053-6058. |
|
Mackinney G (1941). Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315-322. |
|
Martínez-Ruiz EB, Martínez-Jerónimo F (2015). Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: An integrative study. Aqua. Toxicol. 169:27-36. |
|
Meng YL, Liu Z, Rosen BP (2004). As (III) and Sb (III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 279:18334-18341. |
|
Nnorom I, Osibanjo O (2009). Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. Int. J. Environ. Sci. Technol. 6:641-650. |
|
Nriagu LB, Jerome (2000). Molecular aspects of arsenic stress. J. Toxicol. Environ. Health B Crit. Rev. 3:293-322. |
|
Pandey S, Rai R, Rai LC (2012). Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J. Proteom. 75:921-937. |
|
Poonkothai M, Vijayavathi BS (2012). Nickel as an essential element and a toxicant. Int. J. Environ. Sci. 1:285-288. |
|
Qin LQ, Li L, Bi C, Zhang YL, Wan SB, Meng JJ, Meng QW, Li XG. (2011). Damaging mechanisms of chilling-and salt stress to Arachis hypogaea L. leaves. Photosynthetica 49:37-42. |
|
Ragsdale SW (2003). In The Porphyrin Handbook; Kadish KM, Smith KM, Guilard R, Eds.; Academic Press: New York,; 11:205. |
|
Rahman MA, Soumya KK, Tripathi A, Sundaram S, Singh S, Gupta A (2011). Evaluation and sensitivity of cyanobacteria, Nostoc muscorum and Synechococcus PCC 7942 for heavy metals stress – a step toward biosensor. Toxicol. Environ. Chem. 93(10):1982-1990. |
|
Rai LC, Raizada M (1985). Effect of nickel and silver ions on survival, growth, carbon fixation and nitrogenase activity in Nostoc muscorum: Regulation of toxicity by EDTA and calcium. J. Gen. Appl. Microbiol. 31:329-337. |
|
Rai LC, Raizada M (1986). Nickel induced stimulation of growth, heterocyst differentiation, 14CO2 uptake and nitrogenase activity in Nostoc muscorum. New.Phytol. 104:111-114. |
|
Rai LC, Raizada M, Mallick N, Husaini Y, Singh A, Dubey S (1990). Effect of four heavy metals on the biology of Nostoc muscorum. Biol. Met. 2:229-234. |
|
Singh PK, Shrivastava AK, Chatterjee A, Pandey S, Rai S, Singh S, Rai L (2015). Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins. J. Proteom. 127:134-146. |
|
Srivastava AK, Bhargava P, Thapar R, Rai LC (2009). Differential response of antioxidative defense system of Anabaena doliolum under arsenite and arsenate stress. J. Basic. Microbiol. 49:S63-72. |
|
Tantry A, Taher I, Shrivastava D, Nabi M (2015). Arsenite-oxidizing bacteria isolated from arsenic contaminated surface and ground water of Uttar Pradesh, India. Afr. J. Microbiol. Res. 9(48):2320- 2327. |
|
Tawfik DS, Viola RE (2011). Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry 50:1128-1134. |
|
Tercier-Waeber ML, Taillefert M (2008). Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. J. Environ. Monit. 10:30-54. |
|
Vig K, Megharaj M, Sethunathan N, Naidu R (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res. 8:121-135. |
|
Waldron KJ, Firbank SJ, Dainty SJ, Pérez-Rama M, Tottey S, Robinson NJ (2010). Structure and metal loading of a soluble periplasm cuproprotein. J. Biol. Chem. 285:32504-32511. |
|
Waldron KJ, Robinson NJ (2009a). How do bacterial cells ensure that metalloproteins get the correct metal? Nature Rev. Microbiol. 7:25-35. |
|
Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009b). Metalloproteins and metal sensing. Nature 460:823-830. |
|
Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40:1391-1401. |
|
Yu X, Chen L, Zhang W (2015). Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front. Microbiol. 6:56. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0